DOI QR코드

DOI QR Code

Early-onset epileptic encephalopathies and the diagnostic approach to underlying causes

  • Hwang, Su-Kyeong (Department of Pediatrics, Kyungpook National University Children's Hospital) ;
  • Kwon, Soonhak (Department of Pediatrics, Kyungpook National University Children's Hospital)
  • Received : 2015.09.01
  • Accepted : 2015.10.28
  • Published : 2015.11.15

Abstract

Early-onset epileptic encephalopathies are one of the most severe early onset epilepsies that can lead to progressive psychomotor impairment. These syndromes result from identifiable primary causes, such as structural, neurodegenerative, metabolic, or genetic defects, and an increasing number of novel genetic causes continue to be uncovered. A typical diagnostic approach includes documentation of anamnesis, determination of seizure semiology, electroencephalography, and neuroimaging. If primary biochemical investigations exclude precipitating conditions, a trial with the administration of a vitaminic compound (pyridoxine, pyridoxal-5-phosphate, or folinic acid) can then be initiated regardless of presumptive seizure causes. Patients with unclear etiologies should be considered for a further workup, which should include an evaluation for inherited metabolic defects and genetic analyses. Targeted next-generation sequencing panels showed a high diagnostic yield in patients with epileptic encephalopathy. Mutations associated with the emergence of epileptic encephalopathies can be identified in a targeted fashion by sequencing the most likely candidate genes. Next-generation sequencing technologies offer hope to a large number of patients with cryptogenic encephalopathies and will eventually lead to new therapeutic strategies and more favorable long-term outcomes.

Keywords

References

  1. Engel J Jr; International League Against Epilepsy (ILAE). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia 2001;42:796-803. https://doi.org/10.1046/j.1528-1157.2001.10401.x
  2. Nieh SE, Sherr EH. Epileptic encephalopathies: new genes and new pathways. Neurotherapeutics 2014;11:796-806. https://doi.org/10.1007/s13311-014-0301-2
  3. Alam S, Lux AL. Epilepsies in infancy. Arch Dis Child 2012;97:985-92. https://doi.org/10.1136/archdischild-2011-301119
  4. Nabbout R, Dulac O. Epileptic syndromes in infancy and childhood. Curr Opin Neurol 2008;21:161-6. https://doi.org/10.1097/WCO.0b013e3282f7007e
  5. Sharma S, Prasad AN. Genetic testing of epileptic encephalopathies of infancy: an approach. Can J Neurol Sci 2013;40:10-6. https://doi.org/10.1017/S0317167100012889
  6. Guerrini R. Epilepsy in children. Lancet 2006;367:499-524. https://doi.org/10.1016/S0140-6736(06)68182-8
  7. Nabbout R, Dulac O. Epileptic encephalopathies: a brief overview. J Clin Neurophysiol 2003;20:393-7. https://doi.org/10.1097/00004691-200311000-00002
  8. Lemke JR, Riesch E, Scheurenbrand T, Schubach M, Wilhelm C, Steiner I, et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 2012;53:1387-98. https://doi.org/10.1111/j.1528-1167.2012.03516.x
  9. Epi4K Consortium; Epilepsy Phenome/Genome Project, Allen AS, Berkovic SF, Cossette P, Delanty N, et al. De novo mutations in epileptic encephalopathies. Nature 2013;501:217-21. https://doi.org/10.1038/nature12439
  10. Kearney JA. Epi4K phase I: gene discovery in epileptic encephalopathies by exome sequencing. Epilepsy Curr 2014;14:208-10. https://doi.org/10.5698/1535-7597-14.4.208
  11. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012;485:237-41. https://doi.org/10.1038/nature10945
  12. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe nonsyndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012;380:1674-82. https://doi.org/10.1016/S0140-6736(12)61480-9
  13. Epi4K Consortium. Epi4K: gene discovery in 4,000 genomes. Epilepsia 2012;53:1457-67. https://doi.org/10.1111/j.1528-1167.2012.03511.x
  14. Baxter P. Recent insights into pre- and postnatal pyridoxal phosphate deficiency, a treatable metabolic encephalopathy. Dev Med Child Neurol 2010;52:597-8. https://doi.org/10.1111/j.1469-8749.2010.03705.x
  15. Schmitt B, Baumgartner M, Mills PB, Clayton PT, Jakobs C, Keller E, et al. Seizures and paroxysmal events: symptoms pointing to the diagnosis of pyridoxine-dependent epilepsy and pyridoxine phosphate oxidase deficiency. Dev Med Child Neurol 2010;52:e133-42. https://doi.org/10.1111/j.1469-8749.2010.03660.x
  16. Baxter P. Pyridoxine-dependent and pyridoxine-responsive seizures. Dev Med Child Neurol 2001;43:416-20. https://doi.org/10.1017/S0012162201000779
  17. Baxter P. Pyridoxine or pyridoxal phosphate for intractable seizures? Arch Dis Child 2005;90:441-2.
  18. Agadi S, Quach MM, Haneef Z. Vitamin-responsive epileptic encephalopathies in children. Epilepsy Res Treat 2013;2013:510529.
  19. Surtees R, Wolf N. Treatable neonatal epilepsy. Arch Dis Child 2007;92:659-61. https://doi.org/10.1136/adc.2007.116913
  20. Wolf B, Heard GS, Weissbecker KA, McVoy JR, Grier RE, Leshner RT. Biotinidase deficiency: initial clinical features and rapid diagnosis. Ann Neurol 1985;18:614-7. https://doi.org/10.1002/ana.410180517
  21. Salbert BA, Pellock JM, Wolf B. Characterization of seizures associated with biotinidase deficiency. Neurology 1993;43:1351-5. https://doi.org/10.1212/WNL.43.7.1351
  22. Wolf B. The neurology of biotinidase deficiency. Mol Genet Metab 2011;104:27-34. https://doi.org/10.1016/j.ymgme.2011.06.001
  23. Wolf B. Clinical issues and frequent questions about biotinidase deficiency. Mol Genet Metab 2010;100:6-13. https://doi.org/10.1016/j.ymgme.2010.01.003
  24. Joshi SN, Fathalla M, Koul R, Maney MA, Bayoumi R. Biotin responsive seizures and encephalopathy due to biotinidase deficiency. Neurol India 2010;58:323-4. https://doi.org/10.4103/0028-3886.63783
  25. Lundgren J, Blennow G. Vitamin B12 deficiency may cause benign familial infantile convulsions: a case report. Acta Paediatr 1999;88:1158-60. https://doi.org/10.1111/j.1651-2227.1999.tb01006.x
  26. Erol I, Alehan F, Gumus A. West syndrome in an infant with vitamin B12 deficiency in the absence of macrocytic anaemia. Dev Med Child Neurol 2007;49:774-6. https://doi.org/10.1111/j.1469-8749.2007.00774.x
  27. Rasmussen SA, Fernhoff PM, Scanlon KS. Vitamin B12 deficiency in children and adolescents. J Pediatr 2001;138:10-7. https://doi.org/10.1067/mpd.2001.112160
  28. Ohtahara S, Yamatogi Y. Epileptic encephalopathies in early infancy with suppression-burst. J Clin Neurophysiol 2003;20:398-407. https://doi.org/10.1097/00004691-200311000-00003
  29. Zupanc ML. Clinical evaluation and diagnosis of severe epilepsy syndromes of early childhood. J Child Neurol 2009;24(8 Suppl):6S-14S. https://doi.org/10.1177/0883073809338151
  30. Ohtahara S, Ohtsuka Y, Yamatogi Y, Oka E. The early-infantile epileptic encephalopathy with suppression-burst: developmental aspects. Brain Dev 1987;9:371-6. https://doi.org/10.1016/S0387-7604(87)80110-9
  31. Ohtahara S, Yamatogi Y. Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res 2006;70 Suppl 1:S58-67. https://doi.org/10.1016/j.eplepsyres.2005.11.021
  32. Murakami N, Ohtsuka Y, Ohtahara S. Early infantile epileptic syndromes with suppression-bursts: early myoclonic encephalopathy vs. Ohtahara syndrome. Jpn J Psychiatry Neurol 1993;47:197-200.
  33. Fusco L, Pachatz C, Di Capua M, Vigevano F. Video/EEG aspects of early-infantile epileptic encephalopathy with suppression-bursts (Ohtahara syndrome). Brain Dev 2001;23:708-14. https://doi.org/10.1016/S0387-7604(01)00280-7
  34. Khan S, Al Baradie R. Epileptic encephalopathies: an overview. Epilepsy Res Treat 2012;2012:403592.
  35. Lombroso CT. Early myoclonic encephalopathy, early infantile epileptic encephalopathy, and benign and severe infantile myoclonic epilepsies: a critical review and personal contributions. J Clin Neurophysiol 1990;7:380-408. https://doi.org/10.1097/00004691-199007000-00005
  36. Dalla Bernardina B, Dulac O, Fejerman N, Dravet C, Capovilla G, Bondavalli S, et al. Early myoclonic epileptic encephalopathy (E.M.E.E.). Eur J Pediatr 1983;140:248-52. https://doi.org/10.1007/BF00443371
  37. Mackay MT, Weiss SK, Adams-Webber T, Ashwal S, Stephens D, Ballaban-Gill K, et al. Practice parameter: medical treatment of infantile spasms: report of the American Academy of Neurology and the Child Neurology Society. Neurology 2004;62:1668-81. https://doi.org/10.1212/01.WNL.0000127773.72699.C8
  38. Wong M, Trevathan E. Infantile spasms. Pediatr Neurol 2001;24:89-98. https://doi.org/10.1016/S0887-8994(00)00238-1
  39. Trevathan E, Murphy CC, Yeargin-Allsopp M. The descriptive epidemiology of infantile spasms among Atlanta children. Epilepsia 1999;40:748-51. https://doi.org/10.1111/j.1528-1157.1999.tb00773.x
  40. Caraballo R, Vaccarezza M, Cersosimo R, Rios V, Soraru A, Arroyo H, et al. Long-term follow-up of the ketogenic diet for refractory epilepsy: multicenter Argentinean experience in 216 pediatric patients. Seizure 2011;20:640-5. https://doi.org/10.1016/j.seizure.2011.06.009
  41. Pellock JM, Hrachovy R, Shinnar S, Baram TZ, Bettis D, Dlugos DJ, et al. Infantile spasms: a U.S. consensus report. Epilepsia 2010;51:2175-89. https://doi.org/10.1111/j.1528-1167.2010.02657.x
  42. Vigevano F, Fusco L, Cusmai R, Claps D, Ricci S, Milani L. The idiopathic form of West syndrome. Epilepsia 1993;34:743-6. https://doi.org/10.1111/j.1528-1157.1993.tb00456.x
  43. Lúthvigsson P, Olafsson E, Sigurthardottir S, Hauser WA. Epidemiologic features of infantile spasms in Iceland. Epilepsia 1994;35:802-5. https://doi.org/10.1111/j.1528-1157.1994.tb02514.x
  44. Kivity S, Lerman P, Ariel R, Danziger Y, Mimouni M, Shinnar S. Long-term cognitive outcomes of a cohort of children with cryptogenic infantile spasms treated with high-dose adrenocorticotropic hormone. Epilepsia 2004;45:255-62. https://doi.org/10.1111/j.0013-9580.2004.30503.x
  45. Coppola G. Malignant migrating partial seizures in infancy: an epilepsy syndrome of unknown etiology. Epilepsia 2009;50 Suppl 5:49-51.
  46. Coppola G, Veggiotti P, Del Giudice EM, Bellini G, Longaretti F, Taglialatela M, et al. Mutational scanning of potassium, sodium and chloride ion channels in malignant migrating partial seizures in infancy. Brain Dev 2006;28:76-9. https://doi.org/10.1016/j.braindev.2005.05.002
  47. Elia M. Myoclonic status in nonprogressive encephalopathies: an update. Epilepsia 2009;50 Suppl 5:41-4.
  48. Dalla Bernardina B, Fontana E, Darra F. Myoclonic status in nonprogressive encephalopathies. Adv Neurol 2005;95:59-70.
  49. Caraballo RH, Cersosimo RO, Espeche A, Arroyo HA, Fejerman N. Myoclonic status in nonprogressive encephalopathies: study of 29 cases. Epilepsia 2007;48:107-13. https://doi.org/10.1111/j.1528-1167.2007.01071.x
  50. Covanis A. Update on Dravet syndrome. Dev Med Child Neurol 2011;53 Suppl 2:v-vi. https://doi.org/10.1111/j.1469-8749.2011.03963.x
  51. Bok LA, Maurits NM, Willemsen MA, Jakobs C, Teune LK, Poll-The BT, et al. The EEG response to pyridoxine-IV neither identifies nor excludes pyridoxine-dependent epilepsy. Epilepsia 2010;51:2406-11. https://doi.org/10.1111/j.1528-1167.2010.02747.x
  52. Bahi-Buisson N, Mention K, Leger PL, Valayanopoulos V, Nabbout R, Kaminska A, et al. Neonatal epilepsy and inborn errors of metabolism. Arch Pediatr 2006;13:284-92. https://doi.org/10.1016/j.arcped.2005.10.024
  53. Hoffmann GF, Schmitt B, Windfuhr M, Wagner N, Strehl H, Bagci S, et al. Pyridoxal 5'-phosphate may be curative in early-onset epileptic encephalopathy. J Inherit Metab Dis 2007;30:96-9. https://doi.org/10.1007/s10545-006-0508-4
  54. Mills PB, Footitt EJ, Mills KA, Tuschl K, Aylett S, Varadkar S, et al. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain 2010;133(Pt 7):2148-59. https://doi.org/10.1093/brain/awq143
  55. Sedel F, Gourfinkel-An I, Lyon-Caen O, Baulac M, Saudubray JM, Navarro V. Epilepsy and inborn errors of metabolism in adults: a diagnostic approach. J Inherit Metab Dis 2007;30:846-54. https://doi.org/10.1007/s10545-007-0723-7
  56. Mercimek-Mahmutoglu S, Patel J, Cordeiro D, Hewson S, Callen D, Donner EJ, et al. Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia 2015;56:707-16. https://doi.org/10.1111/epi.12954
  57. Helbig I. New technologies in molecular genetics: the impact on epilepsy research. Prog Brain Res 2014;213:253-78. https://doi.org/10.1016/B978-0-444-63326-2.00013-2

Cited by

  1. Genetic Basis of Early-onset Developmental and Epileptic Encephalopathies vol.3, pp.1, 2015, https://doi.org/10.22742/jig.2021.3.1.13
  2. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview vol.35, pp.11, 2015, https://doi.org/10.1002/ptr.7213
  3. Approach to Neurological Channelopathies and Neurometabolic Disorders in Newborns vol.11, pp.11, 2021, https://doi.org/10.3390/life11111244
  4. WDR45, one gene associated with multiple neurodevelopmental disorders vol.17, pp.12, 2015, https://doi.org/10.1080/15548627.2021.1899669