Original Article	SPECT/CT 영상에서 에너지창 기반 산란보정과 CT 기반 산란보정 방법의 정량적 정확성 비교 서울특별시 서울의료원 핵의학과 ¹ , 연세대학교 보건대학원 ² , 신구대학교 방사선과 ³ 김지현 ¹ · 손현수 ¹ · 이주영 ² · 박훈희 ³ The Comparison of Quantitative Accuracy Between Energy Window-Based and CT-Based Scatter Correction Method in SPECT/CT Images
	Ji–Hyeon Kim ¹ , Hyeon–Soo Son ¹ , Juyoung Lee ² and Hoon–Hee Park ³ ¹ Department of Nuclear Medicine, Seoul Medical Center ² Graduate School of Public Health, Yonsei University ³ Department of Radiological Technology, Shingu College
Purpose	In SPECT image, scatter count is the cause of quantitative count error and image quality degradation. Thus, a wide range of scatter correction(SC) methods have been studied and this study is to evaluate the accuracy of CT based SC(CTSC) used in SPECT/CT as the comparison with existing energy window based SC(EWSC).
Materials and Methods	SPECT/CT images were obtained after filling air in order to acquire a reference image without the influence of scatter count inside the Triple line insert phantom setting hot rod(74.0 MBq) in the middle and each SPECT/CT image was obtained each separately after filling water instead of air in order to derive the influence of scatter count under the same conditions. In both conditions, Astonish(iterative : 4 subset : 16) reconstruction method and CT attenuation correction were commonly applied and three types of SC methods such as non-scatter correction(NSC), EWSC, CTSC were used in images filled with image. For EWSC, 9 sub-energy windows were set additionally in addition to main(=peak) energy window(140 keV, 20%) and then, images were acquired at the same time and five types of EWSC including DPW(dual photo-peak window)10%, DEW(dual energy window)20%, TEW(triple energy window)10%, TEW5.0%, TEW2.5% were used. Under the condition without fluctuations in primary count, total count was measured by drawing volume of interest (VOI) in the images of the two conditions and then, the ratio of scatter count of total counts was calculated as percent scatter fraction(%SF) and the count error with image filled with water was evaluated with percent normalized mean-square error(%NMSE) based on the image filled with air.
Results	Based on the image filled with air, %SF of images filled with water to which each SC method was applied is NSC 37.44, DPW 27.41, DEW 21.84, TEW10% 19.60, TEW5% 17.02, TEW2.5% 14.68, CTSC 5.57 and the most scattering counts were removed in CTSC and %NMSE is NSC 35.80, DPW 14.28, DEW 7.81, TEW10% 5.94, TEW5% 4.21, TEW2.5% 2.96, CTSC 0.35 and the error in CTSC was found to be the lowest.
Conclusion	In SPECT/CT images, the application of each scatter correction method used in the experiment could improve the quantitative count error caused by the influence of scatter count. In particular, CTSC showed the lowest %NMSE(=0.35) compared to existing EWSC methods, enabling relatively accurate scatter correction.
Key Words	SPECT/CT, Scatter correction, Energy Window

• Received: October 02. 2015 Accepted: October 14. 2015

Corresponding author: Hoon-Hee Park

• Department of Radiological Technology, Shingu College, 377 Gwangmyeong-ro, Seongnam, 462-743, Korea Tel: +82-31-740-1638, Fax: +82-31-740-1589 E-mail: hzpark@shingu,ac.kr 서 론

SPECT영상의 획득 과정에서 발생되는 감마선의 산란유 형은 1차선(primary)의 산란(valid event), 검출기 내부에서 발생되는 컴프턴 산란(detector scatter event), 피사체 내부에

Fig. 1. Total count spectrum(right) adding count of area1(left) to primary count was set up in main window. Count of area1 is same to count of area2(right) equal to area subtracting primary spectrum area from total spectrum area.

서 발생되는 컴프턴 산란(object scatter event), 격자투과 (septal penetration)산란 총 4가지이며, 이중 1차선을 제외한 나머지는 모두 산란선으로 분류된다.¹⁾ 일반적으로 핵의학 영상에서 획득된 결과영상의 총계수(total count)는 1차선의 계수(primary count)와 산란계수(scatter count)의 합과 같다 (Fig. 1).²⁾ 1차선의 계수에 변동이 없을 때 산란계수로 부터의 영향은 방사능의 과소 또는 과대평가로 계수오차(error)를 발생시키는 것뿐만 아니라, 나아가 잘못된 위치정보, 영상 품질의 저하 및 왜곡을 가져오는 주요한 인자 중 하나이다. 따라서 정확한 영상을 획득하기 위하여 반드시 보정 되어야 하는 부분이며, 이미 다양한 산란보정(scatter correction, SC) 방법들이 고안되어 정확성 비교와 임상적용 유용성에 관한 평가가 활발히 이루어져 왔다.³⁻¹⁷⁾

고안된 산란보정 방법들 중 보조 에너지창(sub-energy window)의 설정을 통하여 획득한 산란계수를 주 에너지창 (main energy window)을 통해 획득된 총계수에서 감산하는 에너지창 기반 산란보정방법(energy window based scatter correction, EWSC)이 가장 대표적이며, 그 밖에 다수의 신경 회로망의 설정으로 얻어진 데이터를 몬테카를로 시뮬레이 션 하여 보정하는 시뮬레이션 기반 산란보정방법, 마지막으 로 SPECT/CT의 보급과 함께 CT로부터 얻은 감약 (attenuation) 데이터를 이용하여 보정하는 CT 기반 산란보

정방법(CT based scatter correction, CTSC)등이 있다.

각 방법들에 관한 *Changizi*³⁾ 등의 연구에서는 EWSC방법 을 적용하였을 때, 정량적 SPECT영상의 정확한 평가와 품 질개선이 가능하며, 비교적 쉽게 임상에서의 적용이 가능하 다 보고되었다.³⁻⁵⁾ 또한 *Dewaraja*⁷⁾ 외의 여러 연구문헌들에 서는 몬테카를로 기반의 시뮬레이션 산란보정 방법이 EWSC보다 정량적 정확성이 우수하다 보고되었다.⁷⁻⁹⁾ 하지 만 시뮬레이션 기반의 산란보정은 현재 임상에서 사용되는 장비상의 한계와 시뮬레이션 작업등의 불편함으로 인해 임 상에서의 적용은 쉽지 않으며, CTSC 방법은 아직 정확성에 관한 연구가 활발히 이루어지지 않은 실정이다. 따라서 본 연구에서는 임상에서 비교적 쉽게 사용이 가능한 EWSC방 법의 정확성을 바탕으로 최근 SPECT/CT의 보급이 늘면서 많은 사용이 기대되는 CTSC방법의 정확성을 확인해 보고 자 하였다.

실험재료 및 방법

1. 실험재료 및 대상

1) 팬텀(phantom) 재원

팬텀내부 열소(hot region)의 체적(volume)을 최소화하기

위하여 구(sphere)형태보다는 막대(rod)형태로 설정이 가능 한 SPECT Phantom acc. IEC 61675-2(triple line insert phantom)(PTW, Freiburg im Breisgau, Germany)를 사용했다 (Fig. 2). 팬텀의 외경은 200 mm이며 내부에는 직경 7 mm의 아크릴 관이 3개 있다. 각 관에는 외경 5 mm, 내경 2mm의 막 대형 열소(hot rod)를 삽입 할 수 있고, 기타 점(point) 또는 선 (line)형 선원(source)을 삽입할 수 있다. 실험은 막대형 열소 에 ^{99m}Tc선원을 이용하여 방사능 74 MBq(2.0 mCi)를 설정하 였다.

Fig. 2. Triple line insert phantom was used to evaluate the total count of SPECT/CT study.

2) 장비 및 영상획득

SPECT/CT장비는 BrightView XCT (Philips Health care, Cleveland, USA)를 이용하였으며(Fig. 3), SPECT 영상획득 조건은 matrix size는 64 x 64, 투사영상당 30 초씩 5.6° 간격으 로 총 64 frames를 획득하였다. CT 영상획득 조건은 관전압 120 kV, 관전류는 20 mA이며, CT 촬영 방식은 3 segments localization fast mode를 사용하고 재구성 알고리즘(algorithm)은 standard를 사용하였다.

Fig. 3. BrightView XCT (SPECT/CT with flat-panel detector) was used for experiments.

2. 실험방법

1) 팬텀실험

Triple line insert phantom의 내부에 열소를 설정하고 감쇠 와 산란선 발생이 거의 없는 공기를 내부에 채워 기준영상을 획득한다. 이어서 감쇠 및 산란계수의 발생이 상대적으로 많 아지도록 유도하기 위하여 팬텀 내부를 물로 채워 영상을 획 득하였다(Fig. 4). 획득된 두 영상을 통하여 총계수, 산란계 수, 1차선의 계수를 측정하고, 산란보정 적용에 따른 산란계 수의 변화를 알아보고자 하였다.

Fig. 4. Hot rod was inserted in air phantom(left) and water phantom(right) for scatter count comparison.

2) SPECT 영상 재구성 및 보정방법

산란보정방법은 비산란보정(non scatter correction, NSC), 에너지창 기반 산란보정(energy window based scatter correction, EWSC), CT 기반 산란보정(CT based scatter correction, CTSC) 크게 3가지로 분류하여 적용시켰으며, 세 부적으로 EWSC의 경우 가장 대표적인 방법인 DPW(dual photo-peak window), DEW(dual-energy window), TEW (triple-energy window) 보정방법을 사용하였다. 그 밖에 재구 성 방법 및 기타 CT 기반의 감쇠보정(attenuation correction, AC)과 붕괴보정(decay correction, DC)방법을 공통 적용시켜 산란보정방법 이외의 변경인자를 고정시켜 각각의 산란보정 방법의 적용에 따른 정량적 정확성만을 비교 평가하고자 하 였다.

3. EWSC 세부설정

실험에 사용된 ^{99m}Tc선원에 맞게 주 에너지창을 140 keV± 10%로 1개 설정하고, EWSC 적용을 위한 보조 에너지창을 DPW 2개, DEW 1개, TEW 2.5% 2개, TEW5% 2개, TEW 10% 2개, 추가 설정하여, 총 10개의 에너지창을 통해 SPECT 영상 을 동시 획득하였다(Fig. 5). 각 방법 별 보조 에너지 창 설정

Fig. 5. A total of 10 energy windows adding 9 sub-energy window for applying EWSC to 1 main energy window was set up.

방법과 산란계수 산출방법은 EWSC 관련 대표문헌들을 참 조하여, 다음과 같이 적용 하였다.¹⁰⁻¹⁶⁾

1) DPW

DPW방법은 주 에너지창의 내부를 2등분하여 lower와 upper 2개의 보조 에너지창을 설정한 후 다음과 같은 공식으로 산란계수 Cscatter를 산출하였다:

$$C_{scatter} = C_{main} \times STR$$

*C_{main}*은 주 에너지창을 통해 획득된 총계수를 의미하며, STR은 DPW방법 사용 시 특정 선원의 에너지 스펙트럼에서 총계수중의 산란계수의 비(ratio)를 의미하며, STR값의 산 출 공식은 다음과 같다:

STR(scatter to total ratio)=
$$\frac{\alpha + 1}{\alpha - 1} \times \frac{C_{lower} - C_{upper}}{C_{lower} + C_{upper}}$$

이 때 *Clower*는 보조 에너지창 DPW10%(L)의 계수이고, *Cupper*는 보조 에너지창 DPW10%(U)의 계수이다(Fig. 4). *a* 값은 *Clower*와 *Cupper*의 계수 비로써, *Pretorius*¹⁴⁾의 연구에 의 하면^{99m}Tc선원을 사용하였을 때의 *a* 값은 2.64이며, 본 연구 의 DPW방법에도 같은 값을 적용하였다. 각 보조 에너지창 의 에너지 설정 범위는 DPW10%(L)에서 133.33 keV ± 5.0 %(=126.35 keV~139.65 keV), DPW 10%(U)에서 146.66 keV ± 5.0%(=139.65 keV~154.35 keV)이다.

2) DEW

DEW방법은 주 에너지창의 좌측 저에너지 영역에 주 에 너지창과 같은 넓이(±10%)의 보조에너지 창을 설정한 후 다 음과 같은 공식으로 산란계수 Cscatter를 산출하였다:

$$C_{scatter} = k_s \times C_s$$

이 때 k,는 DEW방법 사용 시 특정 선원의 에너지 스펙트 럼에서 보조 에너지창의 총계수와 주 에너지창 내부에 존재 하는 산란계수와의 비(ratio)를 의미한다. Jaszczak¹²⁾의 연구 에 의하면 ^{99m}Tc선원을 사용하였을 때의 k 값은 0.5이며, 그 밖의 다양한 관련 문헌들에서도 k 값으로 0.5를 가장 많이 적 용하여 연구가 진행해 이루어져 온 것을 고려해 본 연구의 DEW방법에도 같은 값을 이용하였다. C,는 보조 에너지창 DEW20 %(Fig. 4.)의 계수이며, 에너지 설정 범위는 114.54 keV ± 10.0%(=103.09 keV~125.99 keV)이다.

3) TEW

TEW방법은 Ichihara T.¹⁶⁾의 연구를 참조하여 주 에너지 창의 좌측 저에너지 영역(low)과 우측 고에너지 영역(high) 에 각각 보조 에너지창 1개씩 추가하여 총 3개의 에너지창을 설정 한 후 다음과 같은 공식으로 산란계수 Cscatter를 산출하 였다:

$$C_{scatter} = \left(rac{C_{low}}{W_{low}} + rac{C_{high}}{W_{high}}
ight) imes rac{W_{main}}{2}$$

TEW방법은 보조 에너지창의 넓이(%)를 다양하게 변화 시켜 적용할 수 있으며, 넓이에 따른 산란보정의 정확성에 차이가 발생하기 때문에 본 연구에서는 각각2.5%, 5%, 10% 로 나눠 넓이를 설정하고, 총 3가지 TEW방법을 적용하였다.

TEW2.5%방법에서 *Clow와 Wlow*는 각각 보조 에너지창 TEW2.5%(L)의 계수와 에너지 설정 범위 2.5%를 의미하며, *Chigh와 Whigh*는 각각 보조 에너지창 TEW2.5%(H)의 계수와 에너지 설정 범위 2.5%를 의미한다(Fig. 4). 각 보조 에너지 창의 에너지 설정 세부 범위는 TEW2.5%(L)에서 124.40 keV ± 1.25% (=122.85 keV~125.95 keV), TEW2.5%(H)에서 156.0 keV ± 1.25% (=154.05 keV~157.95 keV) 이다. 주 에너 지창의 에너지 설정 범위 *Wmain*은 20 %로 세부 설정 범위 140.0 keV±10%(=126.00 kev~154.00 keV)이다.

TEW5%방법에서 Clow와 Wlow는 각각 보조 에너지창 TEW5%(L)의 계수와 에너지 설정 범위 5%를 의미하며, Chigh와 Whigh는 각각 보조 에너지창 TEW 5%(H)의 계수와 에 너지 설정 범위 5%를 의미한다(Fig. 4). 각 보조 에너지창의 에너지 설정 세부 범위는 TWE5%(L)은 122.92 keV ± 2.5% (=119.85 keV~125.99 keV), TWE5%(H)에서 157.95 keV ± 2.5% (=154.00 keV~161.90 keV)이다.

TEW10%방법에서 Clow와 Wlow는 각각 보조 에너지창 TEW10%(L)의 계수와 에너지 설정 범위 10%를 의미하며, Chigh와 Whigh는 각각 보조 에너지창 TEW10%(H)의 계수와 에너지 설정 범위 10%를 의미한다(Fig. 4). 각 보조 에너지창 의 에너지 설정 세부 범위는 TEW10%(L)에서 133.33 keV ± 5.0% (=114.00 keV~126.00 keV), 10%(H)은 162.2 keV ± 5.0% (=154.09 keV~170.31 keV)이다.

주 에너지창을 통해 획득된 총계수에서 각 산란보정방법 별 산출된 산란계수를 감산시켜 보정된 계수를 획득하고, 최 종영상을 재구성을 한다(Fig. 6). 산란보정을 적용한 최종영 상은 이론적으로 총계수 중 산란계수가 제거된 1차선의 계 수만으로 구성된 영상을 기대할 수 있으나, 측정을 통하여 남아 있는 잔존 산란계수(residual scatter count)의 유/무를 확 인하였고, 최종적으로 잔존 산란계수의 존재가 확인되었을 때 그에 따른 정량적 오차를 산출해 정확성을 평가하였다.

Fig. 6. Post correction image(right) is acquired after subtracting sub-window(=scatter) image (center) from pre-correction image(left).

4. 계수측정

각 산란보정 방법(NSC, EWSC, CTSC)으로 보정된 후의 모든 최종영상을 대상으로 CT영상을 융합(fusion)시켜 팬텀 내부의 산란영역을 유관으로 정확히 확인하였고, 팬텀 내부 에서 열소이외의 산란영역에 profile을 설정하여 산란계수 의 유/무를 확인하였다. 확인된 팬텀의 계수측정 범위 내에 서 1차선의 계수뿐 아니라 최대한 많은 산란계수를 포함시 키기 위하여 최대범위의 관심영역 (region of interest, ROI)을 설정하였다. 정량적으로 정확한 측정이 가능하도록 하기 위 하여, 설정된 ROI를 총 10개 slice에 걸쳐 반복 설정하고, 체 적(volume)을 만들어 관심체적(volume of interest, VOI)을 형성시킨 후 총계수를 측정하였다(Fig. 7). 또한 같은 크기의 VOI를 기준영상(공기팬텀)에도 적용해 측정하였으며, 최종 적으로 기준영상에 산란보정을 적용한 물팬텀 영상 7개를 포함하여 총 8개 영상에 대하여 30회 씩 반복측정 하였다.

Fig. 7. VOI was made from the sum of ROIs drew through 10 slice and total count of VOI was measured.

5. 분석 : 정확성 비교

VOI를 통하여 측정된 기준영상 즉, 산란선의 영향을 거의 받지 않은 공기팬텀의 총계수는 실험에 사용된 선원으로부 터 획득되는 1차선의 총계수로 볼 수 있으며, 공기팬텀의 총 계수와 각각의 산란보정방법이 적용된 물팬텀 총계수와의 오차(error)를 다음과 같은 공식을 이용하여 산출하였다:

$$error = T_{scatter} = T_{water} - T_{air}$$

이 때 *T*scatter는 산란보정 방법이 적용 된 후 VOI내에서 측 정되는 잔존 산란계수로써 공기와 물 팬텀간의 오차값을 의 미한다. *Twater*는 산란보정 후의 물팬텀 VOI안의 총계수이며, *Tair*는 공기팬텀의 VOI안 총계수 측정값을 의미한다. 산출된 결과 값을 바탕으로 총계수 중 잔존 산란계수의 백분율인 %SF(percent scatter fraction)^{6.11,17)}와, 산란보정 적용에 따른 오차의 제곱 평균값으로 측정치의 불일치성을 확인할 수 있

Test			Sca	Scatter correction method			(Unit : count)		
No.	NSC	DPW	DEW	TEW10%	TEW5%	TEW2.5%	CTSC		
1	665,253	398,289	309,891	264,117	232,078	197,977	68,339		
2	655,365	420,366	305,027	268,231	223,436	186,379	65,242		
3	656,106	385,862	300,889	255,873	216,546	183,155	49,988		
4	656,106	385,862	300,889	255,873	216,546	183,155	49,988		
5	654,580	421,994	306,655	269,859	225,070	188,007	66,820		
6	655,186	421,069	305,730	268,934	224,145	187,082	65,915		
7	654,208	421,683	306,344	269,548	224,759	187,696	66,539		
8	654,147	422,362	307,023	270,227	225,438	188,375	67,208		
9	653,010	422,607	307,268	270,472	225,683	188,620	67,443		
10	665,253	398,289	309,891	264,117	232,078	197,977	68,339		
11	654,208	421,683	306,344	269,548	224,759	187,696	66,539		
12	654,147	422,362	307,023	270,227	225,438	188,375	67,208		
13	653,010	422,607	307,268	270,472	225,683	188,620	67,443		
14	654,208	421,683	306,344	269,548	224,759	187,696	66,539		
15	654,147	422,362	307,023	270,227	225,438	188,375	67,208		
16	655,365	420,366	305,027	268,231	223,436	186,379	65,242		
17	654,208	421,683	306,344	269,548	224,759	187,696	66,539		
18	654,147	422,362	307,023	270,227	225,438	188,375	67,208		
19	653,010	422,607	307,268	270,472	225,683	188,620	67,443		
20	654,208	421,683	306,344	269,548	224,759	187,696	66,539		
21	654,147	422,362	307,023	270,227	225,438	188,375	67,208		
22	653,010	422,607	307,268	270,472	225,683	188,620	67,443		
23	655,365	420,366	305,027	268,231	223,436	186,379	65,242		
24	654,208	421,683	306,344	269,548	224,759	187,696	66,539		
25	654,147	422,362	307,023	270,227	225,438	188,375	67,208		
26	653,010	422,607	307,268	270,472	225,683	188,620	67,443		
27	656,106	385,862	300,889	255,873	216,546	183,155	49,988		
28	656,106	385,862	300,889	255,873	216,546	183,155	49,988		
29	665,253	398,289	309,891	264,117	232,078	197,977	68,339		
30	665,253	398,289	309,891	264,117	232,078	197,977	68,339		

Table 1. Residual scatter count based on the error value between air and water phantom according to each scatter correction methods

 Table 2. Comparison of each correction method about %SF and %NMSE based on error value(=residual scatter count) of water phantom image in contrast with air phantom image

(Unit:%)	Water phantom							
	NSC	DPW	DEW	TEW10%	TEW5%	TEW2.5%	CTSC	
%SF	37.44	27.41	21.84	19.60	17.02	14.68	5.57	
%NMSE	35.80	14.28	7.81	5.94	4.21	2.96	0.35	

는 %NMSE(percent normalized mean-square error)^{7,11)}를 다 음과 같은 공식을 이용하여 산출하였다:

1) %SF(%Scatter Fraction)

$$\%SF = (T_{water} - T_{air}/T_{water}) \cdot 100\%$$

2) %NMSE(%Normalized Mean Square Error)

$$\% NMSE_{ROI} = \frac{\sum \sum \left[T_{air} - T_{water} \right]^2}{\sum \sum \left[T_{air} \right]^2} \bullet 100\%$$

결 과

실험결과 공기를 채운 팬텀의 총계수(기준영상) 대비 물 을 채운 팬텀의 총계수(산란선 유도 영상)는 증가되었다. 물 을 채운 팬텀에 산란보정을 적용시키지 않은 NSC영상의 총

Fig. 8. The value of %SF after applying each SC method was the lowest in the CTSC. The low value of %SF means that the residual scatter count is low.

계수 대비 각 산란보정 방법을 적용영상들의 총계수는 모두 감소되었고, 산란보정방법을 적용한 모든 영상의 정량적 계 수오차 또한 NSC보다 감소되었다(Table 1).

각 산란보정 방법의 적용 이후 총계수(100%)중 남아있는 잔존 산란계수의 비율인 %SF는 보정을 하지 않았을 때 (NSC) 37.44%, DPW에서 27.41%, DEW에서 21.84%, TEW (10%)에서 19.60%, TEW(5%)에서 17.02%, TEW (2.5%)에 서 14.68%, CTSC에서 5.57%로 전체 산란보정 방법 중 CTSC 적용 시 %SF가 가장 낮았다. EWSC 방법 중에서는 TEW의 %SF가 가장 낮았으며, 특히 TEW는 사용된 보조 에 너지창의 넓이(%)가 좁을수록 %SF가 감소하였다(Table 2, Fig. 8).

각 산란보정 방법의 적용에 따른 보정 정확성을 기준영상 과 물팬텀 영상 간 오차(=잔존 산란계수)의 제곱근 비율로 표현한 %NMSE는 보정을 하지 않았을 때(NSC) 35.80%, DPW에서 14.28%, DEW에서 7.81%, TEW(10%)에서 5.94%, TEW(5%)에서 4.21 %, TEW (2.5%)에서 2.96%, CTSC에서 0.35%로 전체 산란보정 방법 중 CTSC 적용 시 %NMSE가 가장 낮았다. EWSC 방법 중에서는 TEW의 %NMSE가 가장 낮았으며,특히 TEW는 사용된 보조 에너지 창의 넓이(%)가 좁을수록 %NMSE가 감소하였다(Table 2, Fig. 9).

고 찰

정량적 SPECT를 위해서는 감쇠, 산란 등에 대한 물리적 인 요소의 보정이 필수적이다. 특히 광자의 산란에 의해 발

Fig. 9. The value of %NMSE after applying each SC method was the smallest in the CTSC. The low value of %NMSE means that the accuracy is high.

생된 산란계수는 획득된 총계수의 과소 또는 과대평가의 요 인이 되며, 나아가 대조도 저하와 같은 영상품질 변화를 초 래하므로 정확한 영상획득을 위하여 적절한 산란보정 방법 을 적용해주는 것이 중요하다. 다양한 연구 등을 통하여 여 러 산란보정방법이 고안되어져 왔고^{7,12,14,15)}, 최근엔 SPECT /CT의 보급과 함께 CT를 이용한 비교적 빠르고 정확한 감쇠 보정(AC)을 적용한 후에 적절한 EWSC를 병용해주는 복합 적 방법에 대한 정량적 정확성 평가가 시도되고 있다.⁴⁻⁵⁾ 그 러나 기존의 산란보정 방법들 중 비교적 쉽게 적용이 가능한 EWSC도 CTSC만큼 신속한 적용은 어렵기 때문에 업무상 효율성은 CTSC가 가장 우수하다고 볼 수 있는데 그에 비해 정량적 정확성에 관한 연구는 아직 미비한 상황이다. 실제 임상에도 SPECT/CT의 보급이 늘면서 CT를 이용한 다양한 기능들이 활용되고 있지만 CTSC의 경우 적극적인 적용이 어려운 상황이여서 주로 해부학적 위치정보를 제공하는 융 합(fusion)영상과 감쇠보정에만 많이 사용되고 있다. 따라서 본 연구에서는 CTSC의 정확성을 보다 구체적으로 비교평 가해보고 나아가 실제 임상에서 적극적으로 사용이 가능할 지에 대한 가능성을 알아보고자 하였다.

Triple line insert phantom을 이용하여, 열소를 제외한 산란 선 발생 공간을 최대한 넓게 확보하여, 산란선의 발생을 유 도하였고, 내부 산란물질은 감쇠와 산란이 거의 발생되지 않 는 공기를 기준으로 감쇠계수가 약 1000배정도 높은 물을 사 용하여 산란계수 발생에 따른 정량적 계수변화를 측정할 수 있도록 설정하였다. 이때 공기는 산란보정방법 적용에 따른 평가대상이 아니라 평가의 기준을 만들기 위한 물질이며, 본 실험에서는 매질간의 변화보다는 산란보정방법의 차이만 을 비교하기 위하여 물 이외의 다른 평가대상(산란물질)은 고려하지 않고 통일하였다. 또한 팬텀실험의 특성상 내부를 실험재료(산란물질)로 채우기 수월해야 하고, 금속이거나 고체의 물질보다는 물이 비교적 사용이 수월하고, 공기와의 감쇠계수도 충분한 차이가 있기 때문에 우선 적용하였다.

공기는 감쇠계수가 0에 가깝기 때문에 산란계수의 발생 이 거의 없다는 가정 하에 산란계수의 영향을 받지 않은 1차 선의 계수(primary)만 획득된 상태인 기준영상으로 설정하 였으며, 상대적으로 산란계수가 많이 발생하게 될 물에서의 총계수를 측정하여 계수오차를 구하고 오차범위에 따른 각 산란보정 방법 간의 정확성을 비교할 수 있도록 %SF(산란분 획 백분율), %NMSE(정규화-평균제곱오차 백분율)를 산출 하였다. 정확성 비교를 위하여 사용된 산란보정 방법은 대표 적인 EWSC 방법인 DPW(dual photo peak window), DEW (dual energy window), TEW (triple energy window) 3가지를 적용했고, SPECT /CT에 적용된 CT 기반의 산란보정 (CTSC)까지 총 4가지를 사용하여 비교하였다. 각 산란보정 방법 적용에 따라 산란보정 적용 후에 제거되고 남아있는 잔 존 산란계수의 비율을 표현한 %SF는 CTSC에서 5.6%로 가 장 낮았으며, 산란보정적용 후 남아있는 잔존 산란계수에 의 한 정량적 불일치(또는 보정 정확성)를 표현한 %NMSE 역 시 CTSC가 0.35%로 가장 낮아 비교적 정확한 보정이 가능 하였다.

산란보정을 통하여 획득된 영상은 총계수가 전반적으로 감소되는데 이는 불필요하게 증가되었던 산란계수에 의한 영향이 산란계수의 적절한 제거를 통해 감소되어 나타나는 결과로 예측할 수 있다. 실제로 1차선(primary)의 계수는 불 변이기 때문에 영상 본연의 유효계수는 제거되지 않고 유지 되며, 총계수는 줄었다 하더라도 영상의 잡음(noise)으로 작 용되는 산란계수만의 감소이기 때문에 영상품질을 좌우하 는 정량적 지표인 SNR(signal to noise ratio) 또는 CNR (contrast to noise ratio)은 오히려 향상되어 정량적 정확성뿐 만 아니라 영상품질의 향상까지 확보할 수 있을 것으로 사료 된다.특히다양한산란보정방법중CTSC의경우기존의방 법들과 비교하여 산란계수의 제거능력과, 오차변동이 가장 적은 정확한 영상보정을 가능하게 해줌으로써 임상에서 상 대적으로 신속하고 쉽게 적용이 가능하고, 정량적 정확성과 영상품질 향상까지 가능한 산란보정 방법이 될 수 있을 것으 로 사료된다.

그러나 본 실험에서는 발생하지 않았지만 어떤 특별한 조 건이 작용되어 1차선의 계수까지 감소되는 과보정이 일어날 경우(음의 오차값을 갖는 경우)에는 정량적 정확성이 높다하 더라도(%NMSE는 오차의 제곱을 사용하기 때문에 양수, 음 수의 구분 없이 기준에 가까운 절대값을 갖는 오차가 정확성 이 높은 것으로 분석됨) SNR 또는 CNR은 낮아져 영상품질은 반대로 떨어질 수 있는 것을 고려하지 않을 수 없다.

따라서 모든 조건에서 정량적 정확성이 높을수록 영상품 질 또한 향상 될 것으로 예측할 수 없으며, 추후 다양한 조건 의 산란보정을 적용해 정확성뿐만 아니라 영상품질까지 동 시에 평가되는 연구가 필요할 것으로 사료된다.

결 론

SPECT/CT영상에서 실험에 사용된 각 산란보정 방법 (EWSC, CTSC)의 적용은 총계수에 더해진 산란계수를 제거 해줌으로써 산란계수의 영향으로 발생된 정량적 계수오차 를 개선시킬 수 있었으며, 모든 산란보정 방법에 있어 공통 적으로 %SF가 낮을수록 %NMSE도 낮아지는 것을 확인하 였다. 연구에 사용된 방법들 중 EWSC보다는 CTSC에서, EWSC중에서는 TEW가, TEW중에서는 보조 에너지창의 넓 이(%)가 좁을수록 개선효과가 더 컸으며, 특히 CTSC의 경 우 가장 낮은 %NMSE(=0.35%)를 보여 정량적으로 기준영 상에 가장 근접된 정확한 영상획득이 가능하였다.

요 약

SPECT영상에서 산란계수는 정량적 계수오차와 영상품 질 저하의 요인이다. 이에 다양한 산란보정(Scatter Correction, SC)방법이 연구되어 왔으며, 본 연구에서는 기존의 에 너지창(Energy Window, EW) 기반 SC(EWSC)와의 비교로 SPECT/CT에서 사용되는 CT 기반 SC(CTSC)의 정확성을 평가하고자 한다.

중앙에 열소막대(hot rod, 74.0 MBq)를 설정한 Triple line insert 팬텀의 내부에 산란계수의 영향이 없는 기준영상의 획 득을 위하여 공기를 채운 후 SPECT/CT영상을 획득하였고, 같은 조건에서 산란계수의 영향을 유도하기 위하여 공기대 신물을 채운 후 SPECT/CT영상을 각각 별도로 획득하였다. 두 조건 모두 Astonish(iterative : 4, subset : 16) 재구성 방법과 CT감쇠보정을 공통 적용하였고, 물을 채운 영상에 비산란보 정(NSC), EWSC, CTSC 3가지 유형의 산란보정방법을 사용 하였다. EWSC를 위하여 주(=peak) 에너지창(140 keV, 20%) 이외에 보조 에너지창9개를 추가 설정한 후 영상을 동시 획득 하였고, EWSC의 종류는 DPW(dual photopeak window) 10%, DEW (dual energy window)20%, TEW(triple energy window)10%, TEW5.0%, TEW2.5% 5가지를 사용하였다. 일차 (primary)계수의 변동이 없는 조건하에, 두 조건의 영상에 VOI를 그려 총계수를 측정한 후 총계수 중 산란계수의 비를 %SF(percent scatter fraction)로 구하고, 공기를 채운 영상을 기준으로 물을 채운 영상과의 계수차이를 %NMSE (per cent normalized mean-square error)로 평가하였다.

공기를 채운 영상을 기준으로 각 산란보정방법이 적용된 물을 채운 영상의 %SF는 NSC 37.44, DPW 27.41, DEW 21.84, TEW10% 19.60, TEW5% 17.02, TEW2.5% 14.68, CTSC 5.57로 CTSC에서 제거된 산란계수가 가장 많았으며, %NMSE는 NSC 35.80, DPW 14.28, DEW 7.81, TEW10% 5.94, TEW5% 4.21, TEW2.5% 2.96, CTSC 0.35로 CTSC에서 가장 낮게 나타났다.

SPECT/CT영상에서 실험에 사용된 각 산란보정 방법의 적용은 산란계수의 영향으로 발생된 정량적 계수오차를 개 선시킬 수 있었다. 특히, CTSC의 경우 기존의 EWSC방법들 과 비교하여 가장 낮은 %NMSE (=0.35)를 보여 비교적 정확 한 산란보정이 가능하였다.

참고문헌

- Simon R. Cherry. PhD, James A. Sorenson. PhD, Michael E. Phelps. PhD. Physics in nuclear medicine. 4th ed. ELSEVIER. 2012. p. 204-206
- Simon R. Cherry. PhD, James A. Sorenson. PhD, Michael E. Phelps. PhD. Physics in nuclear medicine. 4th ed. ELSEVIER. 2012. p. 147-154
- Changizi V, Takavar A, Babakhani A, Sohrabi M. Scatter correction for heart SPECT images using TEW method. J Appl Clin Med Phys. 2008 Jun 23;9(3):2767.
- Farid K, Habert MO, Martineau A, Caillat-Vigneron N, Sibon I. CT nonuniform attenuation and TEW scatter corrections in brain Tc-99m ECD SPECT. *Clin Nucl Med.* 2011 Aug;36(8):665-8.
- Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ. Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. *Cancer Imaging.* 2011 Jun 15;11:56-66.
- Konik A. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging. PhD dissertation University of Iowa. 2010.

- Dewaraja YK, Ljungberg M, Fessler JA. 3-D Monte Carlo-Based Scatter Compensation in Quantitative I-131 SPECT Reconstruction. *IEEE Trans Nucl Sci.* 2006;53(1) :181.
- Xiao J, de Wit TC, Staelens SG, Beekman FJ. Evaluation of 3D Monte Carlo-based scatter correction for 99mTc cardiac perfusion SPECT. *J Nucl Med.* 2006 Oct;47(10) :1662-9.
- Cervo M, Gerbaudo VH, Park MA, Moore SC. Quantitative simultaneous 1111n / 99mTc SPECT-CT of osteomyelitis. *Med Phys.* 2013 Aug;40(8):082501.
- de Nijs R, Lagerburg V, Klausen TL, Holm S. Improving quantitative dosimetry in (177)Lu-DOTATATE SPECT by energy window-based scatter corrections. *Nucl Med Commun.* 2014 May;35(5):522-33.
- Ljungberg M, King MA, Hademenos GJ, Strand SE. Comparison of four scatter correction methods using Monte Carlo simulated source distributions. *J Nucl Med.* 1994 Jan;35(1):143-51.
- R. J. Jaszczak, K. L.Greer, C. E. Floyd, C. C. Harris, and R. E. Coleman. Improved SPECT quantification for scattered photons.. *J Nuc Med.* 1984.;25:893-900.
- King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction. *J Nucl Med.* 1992 Apr;33(4):605-12.
- Pretorius PH, van Rensburg AJ, van Aswegen A, Lötter MG, Serfontein DE, Herbst CP. The channel ratio method of scatter correction for radionuclide image quantitation. *J Nucl Med.* 1993 Feb;34(2):330-5.
- Dewaraja YK, Li J, Koral KF. Quantitative I-131 SPECT with triple energy window Compton scatter correction. *IEEE Trans Nucl Sci.* 1998;45:3109–3114.
- Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. *J Nucl Med.* 1993 Dec;34(12):2216-21.
- Meikle SR, Hutton BF, Bailey DL. A transmissiondependent method for scatter correction in SPECT. *J Nucl Med.* 1994 Feb;35(2):360-7.