낮은 스위칭 주파수로 구동되는 유도전동기의 모델예측토크제어

(MPTC of Induction Motor Driven with Low Switching Frequency)

최유현*·한정호·송중호**

(Yuhyon Choi · Jungho Han · Joongho Song)

Abstract

When medium and large induction motors are driven by 2-level inverters with low switching frequency, induction motors provoke deteriorated performances resulted from large torque ripples, flux ripples, and large current distortion. Model predictive torque control(MPTC) for a fast torque control of induction motors is also suffered from large torque ripples when the induction motors are fed by 2-level inverters that are based on 6 active voltage vectors with low switching frequency restricted. To solve this problem, this paper proposes a new MPTC method based on both a 12 active voltage vector and an optimized duty ratio calculation. The proposed control strategy illustrates its effectiveness under the various operating conditions through simulation works.

Key Words : Induction Motor, Model Predictive Torque Control(MPTC), Middle Voltage Vector

1. 서 론

교류전동기를 구동하는 제어방식 중 하나인 DTC (Direct Torque Control)는 1980년대에 개발된 제어방 식으로서 간단한 제어구조로 빠른 응답속도를 달성할 수 있어 유도전동기, PMSM 등에 널리 사용되고 있 다. DTC기법 중 스위칭 테이블 DTC(ST-DTC)[1]은

** Corresponding author : Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology, Professor Tel : 02-970-6415, Fax : 02-978-2754
E-mail : cyh2690@seoultech.ac.kr
Received : 2014. 11. 13 전동기의 토크와 자속을 히스테리시스 제어기를 통하 여 제어하는 방법이다. 이 방법은 히스테리시스 제어 기 출력 상태에 따라 정해진 스위칭 테이블에 의해 인 버터 출력 전압 벡터를 선택하여 전동기를 제어한다. 그러나 ST-DTC는 토크 리플이 클 뿐만 아니라 우수 한 제어성능을 유지하기 위해 높은 스위칭 주파수가 필요한 단점이 있다. 이러한 단점을 극복하기 위해 다 양한 DTC 방법이 제안되었다. 그 방식들 중에서는 인 버터의 기본 전압벡터를 합성하여 지령 전압벡터와 평균적으로 동일한 전압벡터를 만들어 제어하는 공간 벡터 변조(SVM-DTC)[1]와 한 제어주기의 토크 리플 기울기를 계산하고 기울기를 이용하여 토크 리플의 평균값이 0이 되는 값을 전압벡터의 인가시간으로 사 용하여 제어하는 듀티비 제어[2], 모델예측토크제어

^{*} Main author : Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology, Master candidate

Accepted : 2015. 3. 5

Copyright © 2015 KIIEE All right's reserved

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/)which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

(MPTC : Model Predictive Torque Control)[3-4] 등 이 있다.

그 중에서 MPTC는 ST-DTC를 효과적으로 대 체할 수 있는 제어 기법으로 최근 많은 연구가 이 루어지고 있다. MPTC는 전동기에서 측정한 전류 로 추정된 전동기의 자속과 토크의 현재 상태 값과 이산화한 전동기의 모델을 이용하여 다음 제어 주 기의 자속과 토크 값을 예측하고, 예측한 자속과 토 크 값과 자속과 토크의 지령 값의 오차를 최소화 시킬 수 있는 전압벡터를 선택하는 제어방식이다. MPTC는 ST-DTC보다 오차에 따른 전압벡터 선 택이 우수하지만 ST-DTC와 같이 토크 리플이 큰 단점이 있다. 이러한 단점을 극복하기 위해 MPTC 방식으로 선택된 전압벡터에 토크 리플의 평균값이 0이 되는 전압벡터의 인가시간을 구하는 듀티비 제 어를 추가하여 효과적으로 토크 리플을 감소시키는 방법이 연구되었다[3]. 그러나 참고논문[3]은 낮은 속도에서 성능이 우수하지 못한 단점을 가지고 있 다. 이러한 이유로 MPTC에 다음 제어 주기의 자속 과 토크 값을 예측하는 단계에서 듀티비 제어의 전 압벡터 인가시간을 고려하여 전압벡터를 선택함으 로써 낮은 속도에서도 좋은 성능을 갖도록 하는 연 구가 진행되었다[4]. 하지만 참고논문[4]는 수십 kHz의 스위칭 주파수로 운전하는 유도전동기 MPTC에서 우수성을 보여주지만 스위칭 주파수가 수 kHz로 낮아야 하는 대용량 유도전동기 MPTC 에 적합하지 않다.

따라서 본 논문에서는 낮은 스위칭 주파수로 운전하 는 대용량 유도전동기에서 효과적인 MPTC 방법을 제안한다. 제안한 방법은 2-level 인버터의 기본 전압 벡터 6개를 이용하여 12개의 전압벡터를 생성함으로 써 낮은 샘플링 주기에서도 토크 리플과 전류의 왜곡 률을 효과적으로 감소시킬 수 있다[5]. 또한, 대용량 유도전동기 운전에서 많은 손실을 발생시키는 토크 리플 감소를 위해 듀티비 제어를 추가함으로써 토크 리플 감소 성능을 향상 시켰다. 시뮬레이션을 통하여 본 논문이 제안한 MPTC 제어 방법의 타당성과 실효 성을 보여준다.

유도전동기 모델링 및 자속과 토크 추정

2.1 유도전동기 모델링

정지 좌표계 기준으로 표현한 유도전동기의 전압-전류관계식과 쇄교 자속식은 다음과 같다.

$$v_s = R_s i_s + \frac{d\lambda_s}{dt} \tag{1}$$

$$0 = R_r i_r + \frac{d\lambda_r}{dt} - j\omega_r \lambda_r \tag{2}$$

$$\lambda_s = L_s i_s + L_m i_r \tag{3}$$

$$\lambda_r = R_r i_r + L_m i_s \tag{4}$$

여기서 $R_s R_r$ 은 고정자와 회전자 권선 저항, $L_s L_r$ 은 고정자와 회전자 권선 인덕턴스, L_m 은 자화 인덕턴스, ω_r 은 회전자 속도, v_s 는 고정자 전압벡터, $\lambda_s \lambda_r$ 은 고정 자와 회전자 쇄교 자속벡터, $i_s i_r$ 은 고정자와 회전자 전류벡터이다.

유도전동기의 전압-전류관계식, 식 (1)(2)(3)(4)를 고정자와 회전자 자속을 상태 변수로 갖는 상태 공간 방정식을 유도할 수 있다.

$$\frac{d\lambda_s}{dt} = -\alpha L_r R_s \lambda_s + \alpha L_m R_s \lambda_r + v_s \tag{5}$$

$$\frac{d\lambda_r}{dt} = \alpha L_m R_r \lambda_s + (-\alpha L_s R_r + j\omega_r)\lambda_r \tag{6}$$

여기서 $\alpha = 1/(L_s L_r - L_m^2)$ 로 정의한다.

2.2 토크와 자속 추정

자속 추정 방법 중 회전자 전류와 속도를 이용하여 회전자 자속을 추정하는 전류 모델 방식을 사용한다. 이 방식은 측정할 수 없는 회전자 전류식 식 (7)을 식 (4)를 이용하여 구하고 회전자 좌표계 기준으로 표현

Journal of KIIEE, Vol.29, No.3, March 2015

된 회전자 전압 방정식 식 (8)에 대입하여 회전자 자 속식 식 (9)를 얻을 수 있다. 여기서 위 첨자 r은 회전 자좌표계 기준을 나타낸다.

$$i_r^r = \frac{\lambda_r^r - L_m i_s^r}{L_r} \tag{7}$$

$$0 = R_r i_r^r + \frac{d\lambda_r^r}{dt} \tag{8}$$

$$\frac{d\lambda_r^r}{dt} = -\frac{R_r}{L_r}\lambda_r^r + R_r\frac{L_m}{L_r}i_s^r \tag{9}$$

토크 추정은 식 (9)를 좌표 변환을 통해 정지좌표계 기준으로 표현된 회전자 자속과 쇄교 자속 방정식으 로 구한 고정자 자속을 고정자와 회전자 자속으로 표 현된 토크 방정식 식 (10)에 대입하여 추정한다.

$$T_e = \frac{3}{2} \frac{P}{2} \alpha L_m Im \left(\lambda_r^{\dagger} \cdot \lambda_s \right)$$
(10)

여기서 P는 모터의 극수이고, †는 complex conjugate, T_e 는 전기적인 토크이다.

3. 제안한 MPTC 제어

제안한 MPTC의 불록 다이어그램을 그림 1에서 보 여준다.

그림 1. MPTC 블록 다이어그램 Fig. 1. MPTC Block Diagram

고정자 전류를 정지좌표계 기준으로 좌표 변환한 전 류를 이용하여 토크와 고정자 자속을 추정하고 추정

조명·전기설비학회논문지 제29권 제3호, 2015년 3월

된 값을 사용하여 각각의 전압 벡터의 듀티비를 계산 함과 동시에 추정된 값과 각각의 듀티비를 고려한 다 음 주기의 토크와 고정자 자속의 크기를 예측한다. 그 런 다음 토크와 고정자 자속의 크기의 오차로 이루어 진 비용 함수에 대입하여 비용 함수 값이 최소가 되는 전압 벡터를 선택한다. 제안한 MPTC에서 전압 벡터 는 지령 값으로 제어하기 위해 2-level 인버터의 기본 전압벡터를 합성하여 만든 12개의 유효 전압벡터를 사용한 MPTC를 제안한다.

3.1 전압 벡터 선택

기존의 MPTC에서는 2-level 인버터의 기본 전압 벡터 $V_{1...6}$ 을 사용하였다. 그러나 기본 전압벡터만 사용 했을 경우 낮은 스위칭 주파수에서 전류의 왜 곡률이 높아 결과적으로 자속의 리플이 크다. 그래 서 본 논문에서는 기본 전압벡터를 합성하여 만든 중간 전압벡터를 포함한 12개의 유효 전압벡터 $V_{1...12}$ 을 만들어 사용한다. 그림 2는 복소수 공간상에서 기 본 전압벡터 $V_{1...6}$ 와 12개의 유효 전압벡터 $V_{1...12}$ 를 보여준다.

중간 전압벡터 V_{12} , V_{23} , V_{34} , V_{45} , V_{51} , V_{61} 는 그림 2 와 같이 각각의 기본 전압벡터 양변의 기본 전압벡터 를 조합하여 만든다. 예를 들어 V_{12} 는 $V_1(100)$ 과 $V_2(110)$ 을 합성하여 만든다. 이 두 전압벡터를 합성하 기 위해 스위칭 신호 S_a , S_b , S_c 을 그림 3과 같이 $S_a = 2$, $S_b = 1$, $S_c = 0$ 을 출력하여 캐리어 신호와 비교

하면, 전압벡터 V₁과 V₂을 각각 50%씩 출력되어 중간 전압벡터 V₁을 만들 수 있다.

그림 3. 중간 전압벡터 생성 Fig. 3. Generate Middle Voltage Vector

12개의 유효 전압벡터를 만들어 사용하면 기본 전 압벡터를 사용한 것 보다 세분화된 전압벡터를 사 용하여 에러의 크기에 따라 적절한 전압벡터를 선 택할 수 있어 낮은 샘플링 주기에서 토크 리플이 감 소한다.

3.2 듀티비 결정

토크 리플 감소를 위한 듀티비를 결정하기 위해 연 속방정식인 상태 변수 방정식 식 (5), (6)를 1차 오일 러 근사식을 이용하여, 샘플링주기에 따른 이산 방정 식으로 변환한다.

$$\lambda_s(k+1) = \lambda_s(k) + (-\alpha L_r R_s \lambda_s(k)$$

$$+ \alpha L_m R_s \lambda_r(k) + v_s(k)) T_s$$
(11)

$$\lambda_r(k+1) = \lambda_r(k) + (\alpha L_m R_r \lambda_s(k)$$

$$+ (-\alpha L_s R_r + j\omega_r) \lambda_r(k)) T_s$$
(12)

여기서 T,는 제어 주기이다.

그리고 식 (11), (12)에서 구한 (*k*+1)샘플링 순간에 고정자와 회전자 자속을 사용하여 (*k*+1)샘플링 순간 의 토크 *T_e*(*k*+1)을 예측한다.

$$T_e(k+1) = \frac{3}{2} \frac{P}{2} \alpha L_m Im \left(\lambda_r^{\dagger}(k+1) \cdot \lambda_s(k+1)\right)$$
(13)

그 다음 식 (11), (12)와 식 (13)을 합성하여 토크의 변화량을 구한다.

$$\frac{dT_e}{dt} = \frac{3}{2} \frac{P}{2} \alpha L_m \begin{bmatrix} -\alpha R_s L_r Im \left(\lambda_r^{\dagger}(k) \ \lambda_s(k)\right) \\ -\alpha R_r L_s Im \left(\lambda_r^{\dagger}(k) \ \lambda_s(k)\right) \\ -\omega Re \left(\lambda_r^{\dagger}(k) \ \lambda_s(k)\right) \\ +Im \left(\lambda_r^{\dagger}(k) \ u_s(k)\right) \end{bmatrix}$$
(14)

이렇게 구한 식 (14)는 유효 전압벡터의 인가시간을 계산하는데 필요한 토크의 기울기 방정식이다. 식 (14)에 $v_s(k)$ 가 유효 전압벡터일 경우, 기울기를 S_1 으 로 표현하고 항상 양의 값을 가지고, $v_s(k)$ 가 제로 전 압벡터일 경우, 기울기를 S_0 로 표현하고 항상 음의 값 을 가진다.

그림 4. 토크 리플 기울기 계산 Fig. 4. Calculate Torque Ripple Slope

그림 4는 한 제어주기 동안에 토크 리플이다 여기서 T_e^* 는 토크의 지령 값, T_{e0} 는 토크의 초기 값이고 $Duty_{T_e}$ 는 전압벡터의 인가시간이다. 유효 전압벡터의 인가시간을 구하기 위해 토크 리플의 제곱 평균값이 제로가 되는 $Duty_{T_e}$ 을 구한다.

Journal of KIIEE, Vol.29, No.3, March 2015

$$T_{e-ripple}^{2} = \frac{1}{T_{s}} \int_{T_{s}(k)}^{T_{s}(k+1)} \left(T_{e}^{*} - T_{e}\right)^{2} dt$$
(15)

$$\frac{\partial T_{e-ripple}^2}{\partial Duty_{T_e}} = 0$$

이렇게 식 (15)를 *Duty_{Te}*에 대하여 계산하면 토크 리 플이 최소가 되는 전압벡터의 인가 시간을 구할 수 있 다.

$$Duty_{T_e} = \frac{2(T_e^* - T_e) - S_0 T_s}{2S_1 - S_0}$$
(16)

여기서 구한 *Duty_{T_c}*는 상태 변수의 미래 값을 예측 하여 최적은 전압벡터를 선택할 때 사용되는 동시에 전압벡터의 인가시간이 된다. 전압벡터의 인가시간 을 제외한 남은 제어주기에는 제로 전압벡터가 인가 된다.

3.3 MPTC 제어

MPTC는 현재 상태와 시스템 모델을 기반으로 미 래 상태를 예측하고, 예측한 상태를 비용함수에 대입 한다. 그리고 비용함수 출력 값이 최소가 되는 전압 벡터를 선택하여 제어하는 방식이다. 기존에 MPTC 기본 전압벡터에 대한 상태를 예측하지만 본 논문에 서는 12개의 유효 전압 벡터 사용하여 최적의 전압 벡터를 선택한다. 기존의 MPTC방식에서 다음 샘플 링 순간에 고정자 자속과 회전자 자속의 예측은 식 (5)(6)을 2차 오일러 이산화 방식으로 이산화 하여 사 용한다.

$$A = \begin{bmatrix} -\alpha L_r R_s & \alpha L_m R_s \\ \alpha L_r R_s & -\alpha L_m R_r - j\omega_r \end{bmatrix}$$
(17)
$$\begin{bmatrix} \lambda_{sp}(k+1) \\ \lambda_{rp}(k+1) \end{bmatrix} = \begin{bmatrix} \lambda_s(k) \\ \lambda_r(k) \end{bmatrix} + T_s A \begin{bmatrix} \lambda_s(k) \\ \lambda_r(k) \end{bmatrix} + \begin{bmatrix} v_s(k) \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \lambda_s(k+1) \\ \lambda_r(k+1) \end{bmatrix} = \begin{bmatrix} \lambda_{s_{-p}}(k+1) \\ \lambda_{r_{-p}}(k+1) \end{bmatrix} + \frac{T_s}{2} A \left\{ \begin{bmatrix} \lambda_{s_{-p}}(k+1) \\ \lambda_{r_{-p}}(k+1) \end{bmatrix} - \begin{bmatrix} \lambda_s(k) \\ \lambda_r(k) \end{bmatrix} \right\}$$

여기서 $\lambda_{sp}(k+1)$ 와 $\lambda_{rp}(k+1)$ 는 상태 변수의 예측 보정치 이다.

하지만 본 논문에선 조금 더 정확한 상태 변수의 예 측을 위해 기존의 MPTC 예측과 같은 2차 오일러 이 산화 방정식 식 (17)의 전압 벡터 $v_s(k)$ 에 전압 벡터 인가시간 $Duty_{T_e}$ 을 적용하여 상태 변수의 예측 값을 구하다.

$$\begin{bmatrix} \lambda_{sp}(k+1) \\ \lambda_{rp}(k+1) \end{bmatrix} = \begin{bmatrix} \lambda_{s}(k) \\ \lambda_{r}(k) \end{bmatrix} + T_{s}A \begin{bmatrix} \lambda_{s}(k) \\ \lambda_{r}(k) \end{bmatrix} + \begin{bmatrix} v_{s}(k) Duty_{t_{e}} \\ 0 \end{bmatrix}$$
(18)
$$\begin{bmatrix} \lambda_{s}(k+1) \\ \lambda_{r}(k+1) \end{bmatrix} = \begin{bmatrix} \lambda_{s_{-p}}(k+1) \\ \lambda_{r_{-p}}(k+1) \end{bmatrix} + \frac{T_{s}}{2}A \left\{ \begin{bmatrix} \lambda_{s_{-p}}(k+1) \\ \lambda_{r_{-p}}(k+1) \end{bmatrix} - \begin{bmatrix} \lambda_{s}(k) \\ \lambda_{r}(k) \end{bmatrix} \right\}$$

식 (18)로 예측된 상태 변수로 구한 토크 $T_e(k+1)$ 와 고정자 자속 $|\lambda_s(k+1)|$ 을 각각 토크 지령치 T_e^* 와 고정자 자속의 지령치 $|\lambda_s^*|$ 에 도달할 수 있도록 다음 과 같은 비용 함수를 사용한다.

$$C = |T_e^* - T_e(k+1)| + \lambda_{wf} ||\lambda_s^*| - |\lambda_s(k+1)||$$
(19)

여기서 λ_{wf}는 고정자 자속의 비중 값이다.

전압 벡터 $v_s(k)$ 을 V_1 부터 V_{12} 까지 각각의 경우 로 예측한 상태 변수로 구한 고정자 자속의 크기와 토크를 비용 함수 C에 대입하여 그 값이 가장 최 소가 되는 전압 벡터 $v_s(k)$ 가 토크와 고정자 자속 오차를 최소화시키는 최적의 벡터가 된다. 선택된 전압벡터는 3.2절에서 구한 전압 벡터의 인가시간 을 적용하고 남은 제어 주기에는 제로 벡터를 인가 하게 된다.

4. 시뮬레이션

본 논문에서 제안한 12개의 유효 전압 벡터를 이용 한 MPTC의 유효성을 확인하기 위해 시뮬레이션 프 로그램 PSIM을 사용하였다. 효과적인 결과 비교 위해 기본 전압벡터를 이용한 MPTC와 비교하여 시뮬레이 션을 수행한다. 시뮬레이션 파라미터는 표 1과 같고,

시뮬레이션은 기계적인 회전속도 150rpm과 1500rpm 두 가지 경우로 설정하여 토크 리플, 고정자 자속의 리 플 그리고 전류의 왜곡률을 비교하였다. 표 2는 각각 의 회전속도에 대한 토크 맥동률과 표 3은 전류의 THD를 계산하여 보여준다.

그림 5와 6은 두 전압벡터 방식을 사용한 MPTC 의 토크 지령 값, 토크, 그리로 고정자 자속의 출력 파형이다. 0.1초에서 0.105초 구간은 자속 빌드 업 시 간이고, 1.05초 이후 토크와 고정자 자속의 지령 값 으로 제어한다. 고정자 자속의 지령 값은 0.5wb이며, 토크 지령 값은 10Nm에서 0.5초에서 15Nm로 부하 를 증가 시켜 부하변화에 따른 고정자 자속의 변화 를 보여준다.

丑	1. 시뮬레이션 파라미터
Table	1. Simulation parameter

파라미터	값
고정자 저항	1.77Ω
회전자 저항	1.257Ω
고정자 자기 인덕턴스	7mH
회전자 자기 인덕턴스	8mH
자화 인덕턴스	150uH
극 수	4
인버터 스위칭주파수	1kHz
고정자 자속 비중치	100

그림 7과 8은 그림 5와 6의 정상상태 부분을 확대한 것이고 그 때의 듀티를 보여준다. 저속에서 토크 리플 이 차이가 적은반면 고속에서 토크와 자속 리플 모두 12개의 유효 전압벡터를 사용했을 때 감소하는 것을 볼 수 있다.

표	2	<u>2. 토크</u> 의	ㅣ 맥동물	量(%)
Table	2.	Torque	Ripple	Factor(%)

66

	150rpm	1500rpm
6 벡터 사용	26%	95%
12 벡터 사용	25%	76%

그림 9는 150rpm에서 두 전압벡터 방식을 사용한 MPTC의 3상 전류 파형을 보여준다. 기본 전압벡터

- 그림 5. 150rpm에서 (a) 기본 전압벡터와 (b) 12개의 유효 전압벡터를 사용한 MPTC의 토크와 고정자 자속 출력 파형
- Fig. 5. Simulated MPTC Using (a) Basic Voltage Vector (b) 12 of Active Voltage Vector at 150rpm of Torque and Stator Flux

- 그림 6. 1500rpm에서 (a) 기본 전압벡터와 (b) 12개의 유효 전압벡터를 사용한 MPTC의 토크와 고정자 자속 출력 파형
- Fig. 6. Simulated MPTC Using (a) Basic Voltage Vector (b) 12 of Active Voltage Vector at 1500rpm of Torque and Stator Flux

Journal of KIIEE, Vol.29, No.3, March 2015

그림 8. 1500rpm에서 (a) 기본 전압벡터와 (b) 12개의 유효 전압벡터를 사용한 MPTC의 정상 상태 Fig. 8. Simulated steady state for MPTC Using (a) Basic Voltage Vector (b) 12 of Active Voltage Vector at 1500rpm

보다 12개의 유효 전압벡터를 사용한 MPTC의 전류 파형의 왜곡률이 줄어든 것을 볼 수 있다.

조명·전기설비학회논문지 제29권 제3호, 2015년 3월

- 그림 9. 150rpm에서 (a) 기본 전압벡터와 (b) 12개의 유효 전압벡터를 사용한 MPTC의 3상 전류 파형
- Fig. 9. Simulated 3 phase current at 150rpm Using (a) Basic Voltage Vector (b) 12 of Active Voltage Vector

표 3. 전류의 왜곡률(%)

Table 3. Current THD(%)

	150rpm	1500rpm
6 벡터 사용	17%	69%
12 벡터 사용	15%	46%

5. 결 론

본 논문에서는 상태 변수의 미래 상태를 예측하고, 비용 함수를 통해 최적의 전압벡터를 선택하는 MPTC 와 토크 리플 감소를 위한 듀티비 제어 그리고 기본 전압 벡터를 합성한 12개의 유효 전압벡터를 사 용하여 토크 리플과 전류의 왜곡률이 감소하는 것을 시뮬레이션을 통해 증명하였으며, 그 결과 대용량 유 도전동기와 같이 스위칭 주파수가 낮은 인버터를 사 용하는 어플리케이션에 적용하였을 때 제안한 MPTC 의 유효성을 확인하였다.

이 연구는 서울과학기술대학교 교내 학술 연구비(일부) 지원으로 수행되었습니다.

References

 G. S. Buja and M. P. Kazmierkowski, "Direct Torque Control of PWM Inverter-Fed AC Motor - A Survey," IEEE Tran. Ind. Electron., vol. 51, no. 4, pp. 744-757, Aug. 2004.

- [2] J.-K. Kang and S.-K. Sul, "New Dirct Torque Control of Induction Motor for Minimum Torque Ripple and Constant Switching Frequency," IEE Tran. Ind. Appl., vol. 35, no. 5, pp. 1076–1082, Sep./Oct. 1999.
- (3) Y. Zhang and H. Yang, "Torque Ripple Reduction of Model Predictive Torque Control of Induction Motor Drices," in Energy Conversion Congress and Exposition(ECCE) 2013 IEEE, Sep. 2013, pp. 1176–1183.
- [4] Y. Zhang and H. Yang, "Model Predictive Torque Control of Induction Motor Drives With Optimal Duty Cycle Control," IEEE Tran. Power Electron., vol. 29, no. 12, pp. 6593–6603, Dec. 2014.
- [5] B. Singh, S. Jain and S. Dwivedi, "Torque ripple reduction technique with improved flux response for a direct torque control induction motor drive," IET Journals Power Electron., vol. 6, no. 2, pp. 326–342, Feb. 2013.

68

\bigcirc 저자소개 \bigcirc

최유현(崔有鉉)

1987년 2월 9일생. 2013년 서울과학기술 대학교 전기공학과 졸업. 2015년 서울과학 기술대학교 일반대학원 전기정보공학과 졸업(석사).

E-Mail : cyh2690@seoultech.ac.kr

한정호(韓廷虎)

1984년 11월 3일생. 2008년 서울과학기술 대학교 전기공학과 졸업. 2011년 동대학교 철도전문대학원 철도전기신호공학과 졸업 (석사). 2011년~현재 동 대학원 박사과정. E-Mail : hanston@seoultech.ac.kr

송중호(宋重鎬)

1957년 1월 30일생. 1980년 서울대학교 공과대학 전기공학과 졸업. 1982년 동 대학원 전기공학과 졸업(석사). 1993년 한국과학기술원 전기및전자공학과 졸업 (박사). 1995~1996년 미국 위스콘신대 초빙연구원. 1982~1985년 이화전기 기술

개발부. 1985~2002년 한국과학기술원 지능제어연구센터 책임연구원. 2002년~현재 서울과학기술대학교 전기정보 공학과 교수.

E-Mail : joongho@seoultech.ac.kr