DOI QR코드

DOI QR Code

A cross-linking poly(urethane acrylate) binder for Si negative electrode in Li-ion batteries (LIBs)

  • Jang, Suk-Yong (Graduate School of Knowledge Based Technology and Energy, Korea Polytechnic University)
  • 투고 : 2015.11.12
  • 심사 : 2015.12.14
  • 발행 : 2015.12.30

초록

For the fabrication of the Si negative electrode in Li-ion batteries (LIBs) containing the cross-linking polymer binder, in this work, the urethane acrylate (UA) oligomer was synthesized via a simple synthetic process. The cross-linked poly(urethane acrylate) (CPUA)/carbone black (CB)/Si composite (CPUA/CB/Si composite) was fabricated through reactions between their reactive vinyl segments in the UA oligomer. Interestingly, the CPUA/CB/Si composite showed better cycle performance than the poly(vinylidene fluoride) (PVdF)/CB/Si composite (PVdF/CB/Si composite) and the polyurethane (PU)/CB/Si composite (PU/CB/Si composite). The CPUA/CB/Si composite had the best lithiation of about $2586mAh\;g^{-1}$. The UA oligomer showed a good compatibility with the electrode materials and current collector after and before a curing process.

키워드

참고문헌

  1. H.C. Tao, M. Huang, L.Z. Fan, X. Qu, Electrochim. Acta 89 (2013) 394-399. https://doi.org/10.1016/j.electacta.2012.11.092
  2. S. Komaba, K. Okushi, T. Ozeki, H. Yui, Y. Katayama, T. Miura, T. Saito, H. Groult, Electrochem. Solid State Lett. 12 (2009) 107-110.
  3. J. Bae, S.H. Cha, J. Park, Macromol. Res. 21 (2013) 826-831. https://doi.org/10.1007/s13233-013-1089-3
  4. J.S. Thorne, J.R. Dahn, M.N. Obrovac, R.A. Dunlap, J. Power Sources 216 (2012) 139-144. https://doi.org/10.1016/j.jpowsour.2012.05.067
  5. P.P. Ferguson, A.D. W. Todd, J.R. Dahn, Electrochem. Commun. 12 (2010) 1041-1044. https://doi.org/10.1016/j.elecom.2010.05.019
  6. Q. Yuan, F. Zhao, Y. Zhao, Z. Liang, D. Yan, Electrochim. Acta 115 (2014) 16-21. https://doi.org/10.1016/j.electacta.2013.10.106
  7. H. Usui, M. Shimizu, H. Sakaguchi, J. Power Sources 235 (2013) 29-35. https://doi.org/10.1016/j.jpowsour.2013.01.188
  8. H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, P. Novak, J. Power Sources 161 (2006) 617-622. https://doi.org/10.1016/j.jpowsour.2006.03.073
  9. N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, C. Chen, J. Power Sources 192 (2009) 644-651. https://doi.org/10.1016/j.jpowsour.2009.03.017
  10. J. Li, D.B. Le, P.P. Ferguson, J.R. Dahn, Electrochim. Acta 55 (2010) 2991-2995. https://doi.org/10.1016/j.electacta.2010.01.011
  11. Z. Chen, L. Christensen, J.R. Dahn, Electrochem. Commun. 5 (2003) 919-923. https://doi.org/10.1016/j.elecom.2003.08.017
  12. A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, Appl. Mater. Interfaces 2 (2010), 3004-3010. https://doi.org/10.1021/am100871y
  13. H.K. Park, B.S. Kong, E.S. Oh, Electrochem. Commun. 13 (2011) 1051-1053. https://doi.org/10.1016/j.elecom.2011.06.034
  14. J. Guo, A. Sun, X. Chen, C. Wang, A. Manivannan, Electrochim. Acta 56 (2011) 3981-3987. https://doi.org/10.1016/j.electacta.2011.02.014
  15. A.K. Rai, J. Gim, L.T. Anh, J. Kim, Electrochim. Acta 100 (2013) 63-71. https://doi.org/10.1016/j.electacta.2013.03.140
  16. Y.S. Kim, J. Choi, D. Kim, Macromol. Res. 21 (2013) 49-54. https://doi.org/10.1007/s13233-013-1001-1
  17. F.M. Hassan, Z. Chena, A. Yu, Z. Chen, X. Xiao, Electrochim. Acta 87 (2013) 844-852. https://doi.org/10.1016/j.electacta.2012.09.015
  18. H. Xiang, K. Zhang, G. Ji, J.Y. Lee, C. Zou, X. Chen, J. Wu, Carbon 49 (2011) 1787-1796. https://doi.org/10.1016/j.carbon.2011.01.002