DOI QR코드

DOI QR Code

Size-dependent toxicity of silver nanoparticles to Glyptotendipes tokunagai

  • Choi, Seona (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Kim, Soyoun (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Bae, Yeon-Jae (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Park, June-Woo (Ecotoxicology Research Center, Korea Institute of Toxicology) ;
  • Jung, Jinho (Division of Environmental Science and Ecological Engineering, Korea University)
  • Received : 2015.03.03
  • Accepted : 2015.04.21
  • Published : 2015.01.01

Abstract

Objectives This study aims to evaluate the size-dependent toxicity of spherical silver nanoparticles (Ag NPs) to an endemic benthic organism, Glyptotendipes tokunagai. Methods Ag nanoparticles of three nominal sizes (50, 100, and 150 nm) capped with polyvinyl pyrrolidone (PVP-Ag NPs) were used. Their physicochemical properties, acute toxicity (48 hours), and bioaccumulation were measured using third instar larvae of G. tokunagai. Results The aggregation and dissolution of PVP-Ag NPs increased with exposure time and concentration, respectively, particularly for 50 nm PVP-Ag NPs. However, the dissolved concentration of Ag ions was not significant compared with the median lethal concentration value for $AgNO_3$ (3.51 mg/L). The acute toxicity of PVP-Ag NPs was highest for the smallest particles (50 nm), whereas bioaccumulation was greatest for the largest particles (150 nm). However, larger PVP-Ag NPs were absorbed and excreted rapidly, resulting in shorter stays in G. tokunagai than the smaller ones. Conclusions The size of PVP-Ag NPs significantly affects their acute toxicity to G. tokunagai. In particular, smaller PVP-Ag NPs have a higher solubility and stay longer in the body of G. tokunagai, resulting in higher toxicity than larger PVP-Ag NPs.

Keywords

References

  1. Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, et al. Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 2013;47(12):3866-3877. https://doi.org/10.1016/j.watres.2012.11.060
  2. Hendren CO, Badireddy AR, Casman E, Wiesner MR. Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Sci Total Environ 2013;449:418-425. https://doi.org/10.1016/j.scitotenv.2013.01.078
  3. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A. Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 2008;19(24):245705. https://doi.org/10.1088/0957-4484/19/24/245705
  4. Farkas J, Peter H, Christian P, Gallego Urrea JA, Hassellov M, Tuoriniemi J, et al. Characterization of the effluent from a nanosilver producing washing machine. Environ Int 2011;37(6):1057-1062. https://doi.org/10.1016/j.envint.2011.03.006
  5. Golovina NB, Kustov LM. Toxicity of metal nanoparticles with a focus on silver. Mendeleev Commun 2013;23(2):59-65. https://doi.org/10.1016/j.mencom.2013.03.001
  6. Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellov M, Taylor C, et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 2014;466-467:232-241. https://doi.org/10.1016/j.scitotenv.2013.06.101
  7. Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, et al. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnology 2012;10:14. https://doi.org/10.1186/1477-3155-10-14
  8. Pang C, Selck H, Misra SK, Berhanu D, Dybowska A, Valsami-Jones E, et al. Effects of sediment-associated copper to the depositfeeding snail, Potamopyrgus antipodarum: a comparison of Cu added in aqueous form or as nano- and micro-CuO particles. Aquat Toxicol 2012;106-107:114-122. https://doi.org/10.1016/j.aquatox.2011.10.005
  9. Nair PM, Park SY, Lee SW, Choi J. Differential expression of ribo-somal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 2011;101(1):31-37. https://doi.org/10.1016/j.aquatox.2010.08.013
  10. Nair PM, Park SY, Choi J. Evaluation of the effect of silver nanoparticles and silver ions using stress responsive gene expression in Chironomus riparius. Chemosphere 2013;92(5):592-599. https://doi.org/10.1016/j.chemosphere.2013.03.060
  11. Pang C, Selck H, Banta GT, Misra SK, Berhanu D, Dybowska A, et al. Bioaccumulation, toxicokinetics, and effects of copper from sediment spiked with aqueous Cu, nano-CuO, or micro-CuO in the deposit-feeding snail, Potamopyrgus antipodarum. Environ Toxicol Chem 2013;32(7):1561-1573. https://doi.org/10.1002/etc.2216
  12. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 2008;27(9):1825-1851. https://doi.org/10.1897/08-090.1
  13. El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 2011;45(1):283-287. https://doi.org/10.1021/es1034188
  14. Zhao CM, Wang WX. Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 2012;46(20):11345-11351. https://doi.org/10.1021/es3014375
  15. Dai L, Syberg K, Banta GT, Selck H, Forbes VE. Effects, uptake, and depuration kinetics of silver oxide and copper oxide nanoparticles in a marine deposit feeder, Macoma balthica. ACS Sustain Chem Eng 2013;1(7):760-767. https://doi.org/10.1021/sc4000434
  16. Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW. Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 2012;100(4):1033-1043.
  17. Park Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011;32(36):9810-9817. https://doi.org/10.1016/j.biomaterials.2011.08.085
  18. Baek MJ, Yoon TJ, Bae YJ. Development of Glyptotendipes tokunagai (Diptera: Chironomidae) under different temperature conditions. Environ Entomol 2012;41(4):950-958. https://doi.org/10.1603/EN11286
  19. Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 2012;31(1):93-99. https://doi.org/10.1002/etc.708
  20. Organization for Economic Cooperation and Development (OECD). OECD guidelines for testing of chemicals, section 2. Test no. 235: chironomus sp., acute immobilisation Test; 2011 [cited 2014 Jan 23]. Available from: http://www.oecd-ilibrary.org/environment/oecdguidelines-for-the-testing-of-chemicals-section-2-effects-on-bioticsystems_20745761.
  21. United States Environmental Protection Agency. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms [cited 2014 Jan 23]. Available from: http://water.epa.gov/scitech/methods/cwa/wet/disk2_index.cfm.
  22. Jo HJ, Choi JW, Lee SH, Hong SW. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: the importance of their dissolved fraction varying with preparation methods. J Hazard Mater 2012;227-228:301-308. https://doi.org/10.1016/j.jhazmat.2012.05.066
  23. Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey JL. Organiccoated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci 2014;204:15-34. https://doi.org/10.1016/j.cis.2013.12.002
  24. Huynh KA, Chen KL. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ Sci Technol 2011;45(13):5564-5571. https://doi.org/10.1021/es200157h
  25. Stebounova LV, Guio E, Grassian VH. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopart Res 2011;13(1):233-244. https://doi.org/10.1007/s11051-010-0022-3
  26. Tejamaya M, Romer I, Merrifield RC, Lead JR. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 2012;46(13):7011-7017. https://doi.org/10.1021/es2038596
  27. Zook JM, Long SE, Cleveland D, Geronimo CL, MacCuspie RI. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 2011;401(6):1993-2002. https://doi.org/10.1007/s00216-011-5266-y
  28. Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P. Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticledispersion properties. Nanoscale Res Lett 2011;6:27.
  29. Dobias J, Bernier-Latmani R. Silver release from silver nanoparticles in natural waters. Environ Sci Technol 2013;47(9):4140-4146. https://doi.org/10.1021/es304023p
  30. Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, et al. Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS Nano 2013;7(12):10681-10694. https://doi.org/10.1021/nn4034103
  31. Zhao CM, Wang WX. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 2011;30(4):885-892. https://doi.org/10.1002/etc.451

Cited by

  1. Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-p38 Activation in the Monogonont Rotifer (Brachionus koreanus) vol.50, pp.16, 2016, https://doi.org/10.1021/acs.est.6b01441
  2. Combined impact of silver nanoparticles and chlorine on the cell integrity and toxin release of Microcystis aeruginosa vol.272, pp.None, 2015, https://doi.org/10.1016/j.chemosphere.2021.129825
  3. In vivo toxicity evaluation of nanoemulsions for drug delivery vol.44, pp.6, 2015, https://doi.org/10.1080/01480545.2019.1659806