DOI QR코드

DOI QR Code

Effect of aspect ratio on the uptake and toxicity of hydroxylated-multi walled carbon nanotubes in the nematode, Caenorhabditis elegans

  • Eom, Hyun-Jeong (School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Jeong, Jae-Seong (School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul) ;
  • Choi, Jinhee (School of Environmental Engineering, Graduate School of Energy and Environmental System Engineering, University of Seoul)
  • Received : 2014.12.26
  • Accepted : 2015.01.27
  • Published : 2015.01.01

Abstract

Objectives In this study, the effect of tube length and outer diameter (OD) size of hydroxylated-multi walled carbon nanotubes (OH-MWCNTs) on their uptake and toxicity was investigated in the nematode Caenorhabditis elegans using a functional mutant analysis. Methods The physicochemical properties of three different OH-MWCNTs were characterized. Uptake and toxicity were subsequently investigated on C. elegans exposed to MWCNTs with different ODs and tube lengths. Results The results of mutant analysis suggest that ingestion is the main route of MWCNTs uptake. We found that OH-MWCNTs with smaller ODs were more toxic than those with larger ODs, and OH-MWCNTs with shorter tube lengths were more toxic than longer counterparts to C. elegans. Conclusions Overall the results suggest the aspect ratio affects the toxicity of MWCNTs in C. elegans. Further thorough study on the relationship between physicochemical properties and toxicity needs to be conducted for more comprehensive understanding of the uptake and toxicity of MWCNTs.

Keywords

References

  1. Lin Y, Taylor S, Li H, Fernando KS, Qu L, Wang W, et al. Advances toward bioapplications of carbon nanotubes. J Mate Chem 2004; 14(4):527-541. https://doi.org/10.1039/b314481j
  2. Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun (Camb) 2005;(5):571-577.
  3. Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett 2004;4(3):507-511. https://doi.org/10.1021/nl035193d
  4. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2(12):751-760. https://doi.org/10.1038/nnano.2007.387
  5. Wu H, Tang B, Wu P. Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite. J Memb Sci 2010;362(1-2):374-383. https://doi.org/10.1016/j.memsci.2010.06.064
  6. Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev 2006;106(3):1105-1136. https://doi.org/10.1021/cr050569o
  7. Vardharajula S, Ali SZ, Tiwari PM, Eroglu E, Vig K, Dennis VA, et al. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine 2012;7:5361-5374.
  8. Jain S, Thakare VS, Das M, Godugu C, Jain AK, Mathur R, et al. Toxicity of multiwalled carbon nanotubes with end defects critically depends on their functionalization density. Chem Res Toxicol 2011;24(11):2028-2039. https://doi.org/10.1021/tx2003728
  9. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008;4(1):26-49. https://doi.org/10.1002/smll.200700595
  10. Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, et al. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 2006;92(1):5-22. https://doi.org/10.1093/toxsci/kfj130
  11. Helland A, Wick P, Koehler A, Schmid K, Som C. Reviewing the environmental and human health knowledge base of carbon nanotubes. Environ Health Perspect 2007;115(8):1125-1131. https://doi.org/10.1289/ehp.9652
  12. Kolosnjaj-Tabi J, Hartman KB, Boudjemaa S, Ananta JS, Morgant G, Szwarc H, et al. In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano 2010;4(3):1481-1492. https://doi.org/10.1021/nn901573w
  13. Tabet L, Bussy C, Setyan A, Simon-Deckers A, Rossi MJ, Boczkowski J, et al. Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity. Part Fibre Toxicol 2011;8:3. https://doi.org/10.1186/1743-8977-8-3
  14. Fenoglio I, Aldieri E, Gazzano E, Cesano F, Colonna M, Scarano D, et al. Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol 2012;25(1):74-82. https://doi.org/10.1021/tx200255h
  15. Qu G, Bai Y, Zhang Y, Jia Q, Zhang W, Yan B. The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon 2009;47(8):2060-2069. https://doi.org/10.1016/j.carbon.2009.03.056
  16. Liu X, Guo L, Morris D, Kane AB, Hurt RH. Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon N Y 2008;46(3):489-500. https://doi.org/10.1016/j.carbon.2007.12.018
  17. Han SG, Andrews R, Gairola CG. Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal Toxicol 2010;22(4):340-347. https://doi.org/10.3109/08958370903359984
  18. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008;3(7):423-428. https://doi.org/10.1038/nnano.2008.111
  19. Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 2008;295(4):L552-L565. https://doi.org/10.1152/ajplung.90287.2008
  20. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 2010;7:5. https://doi.org/10.1186/1743-8977-7-5
  21. Reddy AR, Reddy YN, Krishna DR, Himabindu V. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells. Toxicology 2010;272(1-3):11-16. https://doi.org/10.1016/j.tox.2010.03.017
  22. Galloway T, Lewis C, Dolciotti I, Johnston BD, Moger J, Regoli F. Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environ Pollut 2010;158(5):1748-1755. https://doi.org/10.1016/j.envpol.2009.11.013
  23. Mouchet F, Landois P, Puech P, Pinelli E, Flahaut E, Gauthier L. Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes. Nanomedicine (Lond) 2010;5(6):963-974. https://doi.org/10.2217/nnm.10.60
  24. Zhao Y, Wu Q, Li Y, Nouara A, Jia R, Wang D. In vivo translocation and toxicity of multi-walled carbon nanotubes are regulated by microRNAs. Nanoscale 2014;6(8):4275-4284. https://doi.org/10.1039/c3nr06784j
  25. Klaper R, Arndt D, Setyowati K, Chen J, Goetz F. Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aquat Toxicol 2010;100(2):211-217. https://doi.org/10.1016/j.aquatox.2010.07.023
  26. Ji L, Chen W, Duan L, Zhu D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol 2009;43(7):2322-2327. https://doi.org/10.1021/es803268b
  27. Yang ST, Luo J, Zhou Q, Wang H. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2012;2(3):271-282. https://doi.org/10.7150/thno.3618
  28. Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, et al. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 2008;106(1):5-28. https://doi.org/10.1093/toxsci/kfn121
  29. Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, et al. Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 2009;43(10):3933-3940. https://doi.org/10.1021/es803477u
  30. Choi J, Tsyusko OV, Unrine JM, Chatterjee N, Ahn JM, Yang X, et al. A micro-sized model for the in vivo study of nanoparticle toxicity: what has Caenorhabditis elegans taught us? Environ Chem 2014;11(3):227-246. https://doi.org/10.1071/EN13187
  31. Jin H, Heller DA, Strano MS. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 2008;8(6):1577-1585. https://doi.org/10.1021/nl072969s
  32. Chen PH, Hsiao KM, Chou CC. Molecular characterization of toxicity mechanism of single-walled carbon nanotubes. Biomaterials 2013;34(22):5661-5669. https://doi.org/10.1016/j.biomaterials.2013.03.093
  33. Eom HJ, Roca CP, Roh JY, Chatterjee N, Jeong JS, Shim I, et al. A systems toxicology approach on the mechanism of uptake and toxicity of MWCNT in Caenorhabditis elegans. Chem Biol Interact 2015;239:153-163. https://doi.org/10.1016/j.cbi.2015.06.031
  34. Yamashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M, et al. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation 2010;33(4):276-280. https://doi.org/10.1007/s10753-010-9182-7
  35. Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, et al. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A 2011;108(49):E1330-E1338. https://doi.org/10.1073/pnas.1110013108
  36. Cheng J, Cheng SH. Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomedicine 2012;7:3731-3739.
  37. Han YG, Xu J, Li ZG, Ren GG, Yang Z. In vitro toxicity of multiwalled carbon nanotubes in C6 rat glioma cells. Neurotoxicology 2012;33(5):1128-1134. https://doi.org/10.1016/j.neuro.2012.06.004
  38. Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, et al. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol 2011;85(7):775-786. https://doi.org/10.1007/s00204-010-0574-0
  39. Kang S, Mauter MS, Elimelech M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 2008;42(19):7528-7534. https://doi.org/10.1021/es8010173

Cited by

  1. Hazard Screening Methods for Nanomaterials: A Comparative Study vol.19, pp.3, 2015, https://doi.org/10.3390/ijms19030649
  2. The assessment of metabolite alteration induced by –OH functionalized multi-walled carbon nanotubes in mice using NMR-based metabonomics vol.8, pp.2, 2015, https://doi.org/10.15171/bi.2018.13
  3. Assessment of the Oral Delivery of a Myelin Basic Protein Gene Promoter with Antiapoptotic bcl-xL (pMBP-bcl-xL) DNA by Cyclic Peptide Nanotubes with Two Aspect Ratios and Its Bio vol.18, pp.7, 2015, https://doi.org/10.1021/acs.molpharmaceut.1c00057
  4. In Vivo Biointeraction and Alleviation of Toxicity of MWCNTs upon Functionalization with ssDNA in a Caenorhabditis elegans Model vol.50, pp.8, 2015, https://doi.org/10.1007/s11664-021-09006-3
  5. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment vol.50, pp.None, 2021, https://doi.org/10.1016/j.mattod.2021.07.025