DOI QR코드

DOI QR Code

A Theoretical Review and Trial Application of the 'Resources-Based View' (RBV) as an Alternative Cognitive Theory

대안적 인지 이론으로서 '자원 기반 관점'에 대한 이론적 고찰과 시험 적용

  • Received : 2015.11.03
  • Accepted : 2015.12.28
  • Published : 2015.12.31

Abstract

The purpose of this study is twofold: to theoretically review the 'resources-based view' (RBV) developed by D. Hammer and his colleagues as an alternative cognitive theory and to illustrate the usefulness of the theory by applying it to interpret a science learning activity in which undergraduate students worked together to construct a model of the seasons. The theoretical review was based on the exploration of relevant literature and dealt mainly with three types of resources: conceptual, epistemological, and practical resources. The trial application revealed that scientific models have been developed through the combination of different pieces of conceptual resources activated from participants, rather than emerging as unitary wholes. However, all the activated resources were not included into a model, and some of the conceptual resources acted as constraints to constructing a scientific model. The implications included that science educators should be attentive and responsive to students' resources and help them use the resources productively to learn science.

본 연구의 목적은 두 가지였다. 첫째는 대안적인 인지 이론으로서 D. Hammer와 그의 동료들이 발전시켜 온 '자원 기반의 관점(RBV)'을 이론적으로 고찰하는 것이고, 둘째는 그것을 대학생들이 계절 변화에 관한 모델을 구성하는 학습 활동을 해석하는 데 적용하여 이론의 유용성을 예시적으로 보이는 것이었다. 이론적인 고찰은 관련 문헌을 탐색하여 이루어졌으며, 그 결과를 세 가지 유형의 자원들-개념적, 인식론적, 실천적 자원-을 중심으로 정리하였다. 시험 적용을 통해 과학 모델은 하나의 전체로서 제안되기보다 참여자들에게서 활성화된 여러 가지 자원들이 결합하는 과정을 통해 구성된다는 것을 알 수 있었다. 하지만 활성화된 자원들이 모두 모델에 포함되는 것은 아니었으며, 어떤 개념적 자원들은 과학적인 모델을 구성하는 데 제한점으로 작용하기도 하였다. 과학 교육자들은 학생들이 가지고 있는 자원들에 주의를 기울이고 그에 반응적이어야 하며, 학생들이 자신의 자원을 생산적으로 활용하여 과학을 배울 수 있도록 도와야 한다는 것을 시사점으로 제안하였다.

Keywords

References

  1. Atwood, R. K., & Atwood, V. A. (1996). Preservice elementary teachers' conceptions of the causes of seasons. Journal of Research in Science Teaching, 33(5), 553-563. https://doi.org/10.1002/(SICI)1098-2736(199605)33:5<553::AID-TEA6>3.0.CO;2-Q
  2. Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (in press). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching. Advance online publication doi: 10.1002/tea.21257.
  3. Berliner, D. C. (2002). Educational research: The hardest science of all. Educational Researcher, 31(8), 18-20. https://doi.org/10.3102/0013189X031008018
  4. Brewer, W. F., & Samarapungavan, A. (1991). Children's theories vs. scientific theories: Differences in reasoning or differences in knowledge. In R. R. Hoffman & D. S. Palermo (Eds.), Cognition and the symbolic processes: Applied and ecological perspectives (pp. 209-232). Hillsdale, NJ: Lawrence Erlbaum Associates.
  5. Chae, D.-H. (1992). Students' naïve theories about change in seasons. Journal of the Korean Earth Science Society, 13(3), 283-289.
  6. Chinn, C. A., Buckland, L. A., & Samarapungavan, A. (2011). Expanding the dimensions of epistemic cognition: Arguments from philosophy and psychology. Educational Psychologist, 46(3), 141-167. https://doi.org/10.1080/00461520.2011.587722
  7. Clement, J., Brown, D., & Zietsman, A. (1989). Not all preconceptions are misconceptions: Finding anchoring conceptions for grounding instruction on students' intuitions. International Journal of Science Education, 11(5), 554-565. https://doi.org/10.1080/0950069890110507
  8. diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2&3), 105-225. https://doi.org/10.1080/07370008.1985.9649008
  9. diSessa, A. A. (2013). A bird's-eye view of the "pieces"vs. "coherence" controversy (from the "pieces"side of the fence). In S. Vosniadou (Ed.), International handbook of research on conceptual change (2nd ed., pp. 31-48). New York: Routledge.
  10. Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122. https://doi.org/10.1080/03057268608559933
  11. Elby, A,. & Hammer, D. (2010). Epistemological resources and framing: A cognitive framework for helping teachers interpret and respond to their students' epistemologies. In L. D. Bendixen & F. C. Feucht (Eds.), Personal epistemology in the classroom: Theory, research, and implications for practice (pp. 409-434). Cambridge: Cambridge University Press.
  12. Ford, M. (2008). 'Grasp of practice' as a reasoning resource for inquiry and nature of science understanding. Science & Education, 17, 147-177. https://doi.org/10.1007/s11191-006-9045-7
  13. Ford, M. (2012). A dialogic account of sense-making in scientific argumentation and reasoning. Cognition and Instruction, 30(3), 207-245. https://doi.org/10.1080/07370008.2012.689383
  14. Hammer, D. (1996). More than misconceptions: Multiple perspectives on student knowledge and reasoning, and an appropriate role for education research. American Journal of Physics, 64(10), 1316-1325. https://doi.org/10.1119/1.18376
  15. Hammer, D. (2000). Student resources for learning introductory physics. Physics Education Research, American Journal of Physics, 68(Suppl. 7), S52-S59.
  16. Hammer, D. (2004a). The variability of student reasoning, lecture 1: Case studies of children's inquiries. In E. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 279-299). Bologna: Italian Physical Society.
  17. Hammer, D. (2004b). The variability of student reasoning, lecture 2: Transitions. In E. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 301-319). Bologna: Italian Physical Society.
  18. Hammer, D. (2004c). The variability of student reasoning, lecture 3: Manifold cognitive resources. In E. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 321-340). Bologna: Italian Physical Society.
  19. Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemology: The psychology of beliefs about knowledge and knowing (pp. 169-190). Mahwah, NJ: Erlbaum.
  20. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89-120). Greenwich, CT: Information Age Publishing.
  21. Hammer, D., Goldberg, F., & Fargason, S. (2012). Responsive teaching and the beginnings of energy in a third grade classroom. Review of Science, Mathematics and ICT Education, 6(1), 51-72.
  22. Hammer, D., Russ, R., Mikeska, J., & Scherr, R. (2008). Identifying inquiry and conceptualizing students' abilities. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry: Recommendations for research and implementation (pp. 138-156). Rotterdam, The Netherlands: Sense Publishers.
  23. Hammer, D., & Sikorski, T.-R. (2015). Implications of complexity for research on learning progressions. Science Education, 99(3), 424-431. https://doi.org/10.1002/sce.21165
  24. Hewson, P. W., & Hewson, M. G. A. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13, 1-13. https://doi.org/10.1007/BF00051837
  25. Hodson, D. (1996). Laboratory work as scientific method: Three decades of confusion and distortion. Journal of Curriculum Studies, 28(2), 115-135. https://doi.org/10.1080/0022027980280201
  26. Hofer, B. K. (2001). Personal epistemology research: Implications for learning and teaching. Journal of Educational Psychology Review, 13(4), 353-383. https://doi.org/10.1023/A:1011965830686
  27. Kikas, E. (1998). The impact of teaching on students' definitions and explanations of astronomical phenomena. Learning and Instruction, 8(5), 439-454. https://doi.org/10.1016/S0959-4752(98)00004-8
  28. Kitchener, R. F. (2002). Folk epistemology: An introduction. New Ideas in Psychology, 20, 89-105. https://doi.org/10.1016/S0732-118X(02)00003-X
  29. Kittleson, J. M. (2012). Epistemological beliefs of third-grade students in an investigation-rich classroom. Science Education, 95, 1026-1048.
  30. Lidar, M., Lundqvist, E., & ostman, L. (2006). Teaching and learning in the science classroom: The interplay between teachers' epistemological moves and students' practical epistemology. Science Education, 90, 148-163. https://doi.org/10.1002/sce.20092
  31. Lee, H. (2007). A research on the necessities and methods of criticism of classroom instruction. Anthropology of Education, 10(1), 155-185. https://doi.org/10.17318/jae.2007.10.1.006
  32. Lee, S.-K. (2015). Conceptual change in learning science. Seoul: SNU press.
  33. Levin, D. M., Hammer, D., & Coffey, J. E. (2009). Novice teachers' attention to student thinking. Journal of Teacher Education, 60(2), 142-154. https://doi.org/10.1177/0022487108330245
  34. Louca, L., Elby, A., Hammer, D., & Kagey, T. (2004). Epistemological resources: Applying a new epistemological framework to science instruction. Educational Psychologist, 39(1), 57-68. https://doi.org/10.1207/s15326985ep3901_6
  35. Manz, E. (2015). Resistance and the development of scientific practice: Designing the mangle into science instruction. Cognition and Instruction, 33(2), 89-124. https://doi.org/10.1080/07370008.2014.1000490
  36. Maskiewicz, A. C., & Winters, V. A. (2012). Understanding the co-construction of inquiry practices: A case study of a responsive teaching environment. Journal of Research in Science Teaching, 49(4), 429-464. https://doi.org/10.1002/tea.21007
  37. May, D. B., Hammer, D., & Roy, P. (2006). Children's analogical reasoning in a third-grade science discussion. Science Education, 90, 316-330. https://doi.org/10.1002/sce.20116
  38. Millar, R., & Driver, R. (1987). Beyond processes. Studies in Science Education, 14, 33-62. https://doi.org/10.1080/03057268708559938
  39. Minstrell, J. (1982). Explaining the 'at rest' condition of an object. Physics Teacher, 20, 10-20. https://doi.org/10.1119/1.2340924
  40. Oh, P. S. (2013). Secondary science teachers' thoughts on 'good' science teaching. Journal of the Korean Association for Science Education, 33(2), 405-424. https://doi.org/10.14697/jkase.2013.33.2.405
  41. Oh, P. S. (2014). Characteristics of teacher learning and changes in teachers' epistemic beliefs within a learning community of elementary science teachers. Elementary Science Education, 33(4), 683-699. https://doi.org/10.15267/keses.2014.33.4.683
  42. Ogan-Bekiroglu, F., & Akkoc, H. (2009). Preservice teachers' instructional beliefs and examination of consistency between beliefs and practices. International Journal of Science and Mathematics Education, 7, 1173-1199. https://doi.org/10.1007/s10763-009-9157-z
  43. Parnafes, O. (2012). Developing explanations and developing understanding: Students explains the phases of the moon using visual representations. Cognition and Instruction, 30(4), 359-403. https://doi.org/10.1080/07370008.2012.716885
  44. Rosebery, A. S., Ogonowski, M., DiSchino, M., & Warren, B. (2010). "The coat traps all your body heat":Heterogeneity as fundamental to learning. The Journal of the Learning Sciences, 19, 322-357. https://doi.org/10.1080/10508406.2010.491752
  45. Rosenberg, S., Hammer, D., & Phelan, J. (2008). Multiple epistemological coherences in an eighth-grade discussion of the rock cycle. The Journal of the Learning Sciences, 15(2). 261-292. https://doi.org/10.1207/s15327809jls1502_4
  46. Sandoval, W. A., & Millwood, K. A. (2008). What can argumentation tell us about epistemology. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 71-88). Dordrecht, The Netherlands: Springer.
  47. Sandoval, W. A., & Morrison, K. (2003). High school students' ideas about theories and theory change after a biological inquiry unit. Journal of Research in Science Teaching, 40(4), 369-392. https://doi.org/10.1002/tea.10081
  48. Smith, J. P., diSessa, A. A., & Roschelle, J. (1993/1994). Misconceptions reconsidered: A constructivist analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115-163. https://doi.org/10.1207/s15327809jls0302_1
  49. Suh, K.-W. (2013). A lesson, how we see: Looking for children's eyes. Paju: Kyoyookbook.
  50. Songer, N. B., Lee, H.-S., & McDonald, S. (2003). Research towards an expanded understanding of inquiry science beyond one idealized standard. Science Education, 87, 490-516. https://doi.org/10.1002/sce.10085
  51. Tang, X., Coffey, J., Elby, A., Levin, D. (2010). The scientific method and scientific inquiry: Tensions in teaching and learning. Science Education, 94, 29-47.
  52. The Ministry of Education (2011). Science 6-1: Teacher guide. Seoul: Author.
  53. Tobin, K., & McRobbie, C. (1997). Beliefs about the nature of science and the enacted science curriculum. Science & Education, 6, 355-371. https://doi.org/10.1023/A:1008600132359
  54. Warren, B., Ballenger, C., Ogonowski, M., Rosebery, A. S., & Hudicourt-Barnes, J. (2001). Rethinking diversity in learning science: The logic of everyday sense-making. Journal of Research in Science Teaching, 38(5), 529-552. https://doi.org/10.1002/tea.1017

Cited by

  1. Effects of Modeling-Based Science Inquiry Instruction on Elementary Students' Learning in the Unit of Seasonal Changes vol.35, pp.2, 2016, https://doi.org/10.15267/keses.2016.35.2.265
  2. 귀추적 사고 과정에서 모델의 역할 -이론과 경험 연구를 통한 도식화- vol.36, pp.4, 2016, https://doi.org/10.14697/jkase.2016.36.4.0551
  3. 교육대학교 학생들의 '전기' 용어의 연상 단어 및 정의에 대한 네트워크 분석 vol.36, pp.5, 2016, https://doi.org/10.14697/jkase.2016.36.5.0791
  4. 초등 과학 수업에서 '반응적 교수'의 실현 가능성 탐색 vol.36, pp.3, 2015, https://doi.org/10.15267/keses.2017.36.3.227
  5. 학생 중심의 과학 학습 공동체 이해를 위한 행위주체성에 대한 이론적 고찰 vol.39, pp.1, 2019, https://doi.org/10.14697/jkase.2019.39.1.101
  6. 과제 맥락에 따른 초등학생들의 암석 기술어(記述語)에 관한 연구 vol.41, pp.1, 2015, https://doi.org/10.5467/jkess.2020.41.1.61
  7. 과학 교육에서 기능 중심의 과학 탐구에 대한 비판적 고찰 vol.40, pp.2, 2020, https://doi.org/10.14697/jkase.2020.40.2.141
  8. 예비과학교사들의 반응적 교수 유형 및 실행의 제약점 분석 vol.40, pp.2, 2015, https://doi.org/10.14697/jkase.2020.40.2.177
  9. 행성 궤도의 모양에 관한 중학교 영재 학생들의 증거 기반 추론 vol.42, pp.1, 2015, https://doi.org/10.5467/jkess.2021.42.1.118