DOI QR코드

DOI QR Code

Some Analogues of a Result of Vasconcelos

  • Received : 2013.06.21
  • Accepted : 2013.09.12
  • Published : 2015.12.23

Abstract

Let R be a commutative ring with total quotient ring K. Each monomorphic R-module endomorphism of a cyclic R-module is an isomorphism if and only if R has Krull dimension 0. Each monomorphic R-module endomorphism of R is an isomorphism if and only if R = K. We say that R has property (${\star}$) if for each nonzero element $a{\in}R$, each monomorphic R-module endomorphism of R/Ra is an isomorphism. If R has property (${\star}$), then each nonzero principal prime ideal of R is a maximal ideal, but the converse is false, even for integral domains of Krull dimension 2. An integral domain R has property (${\star}$) if and only if R has no R-sequence of length 2; the "if" assertion fails in general for non-domain rings R. Each treed domain has property (${\star}$), but the converse is false.

Keywords

References

  1. D. D. Anderson, J. Coykendall, L. Hill and M. Zafrullah, Monoid domain constructions of antimatter domains, Comm. Algebra, 35(2007), 3236-3241. https://doi.org/10.1080/00914030701410294
  2. D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Canad. Math. J., 2(1980), 363-384.
  3. J. Coykendall, D. E. Dobbs and B. Mullins, On integral domains with no atoms, Comm. Algebra, 27(1999), 5813-5831. https://doi.org/10.1080/00927879908826792
  4. I. S. Cohen and A. Seidenberg, Prime ideals and integral dependence, Bull. Amer. Math. Soc., 52(1946), 252-261. https://doi.org/10.1090/S0002-9904-1946-08552-3
  5. D. E. Dobbs, On going-down for simple overrings, II, Comm. Algebra, 1(1974), 439-458. https://doi.org/10.1080/00927877408548715
  6. D. E. Dobbs, Coherence, ascent of going-down and pseudo-valuation domains, Houston J. Math., 4(1978), 551-567.
  7. D. E. Dobbs, Treed domains have grade 1, Internat. J. Commut. Rings, 2(2003), 43-46.
  8. M. Fontana, Topologically defined classes of commutative rings, Ann. Mat. Pura Appl., 123(1980), 331-355. https://doi.org/10.1007/BF01796550
  9. R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
  10. R. Gilmer, Commutative Semigroup Rings, Univ. Chicago Press, Chicago/London, 1984.
  11. J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math., 75(1978), 137-147. https://doi.org/10.2140/pjm.1978.75.137
  12. J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, 1988.
  13. I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago/London, 1974.
  14. W. V. Vasconcelos, Injective endomorphisms of finitley generated modules, Proc. Amer. Math. Soc., 25(1970), 900-901.