DOI QR코드

DOI QR Code

The Study on the Standardization of the Maximum Acceleration of the Electric Multiple Unit through the Analysis of the Traction and the Adhesion Characteristics

견인력 및 점착력 특성 분석을 통한 전동차 최대 가속도 규격 선정에 관한 연구

  • Kim, Jungtai (Metropolitan Transportation Research Center, Korea Railroad Research Institute) ;
  • Kim, Moo Sun (Metropolitan Transportation Research Center, Korea Railroad Research Institute) ;
  • Ko, Kyeongjun (Future Strategy Center, Korea Railroad Research Institute) ;
  • Jang, Dong Uk (Metropolitan Transportation Research Center, Korea Railroad Research Institute)
  • 김정태 (한국철도기술연구원 광역도시교통연구본부) ;
  • 김무선 (한국철도기술연구원 광역도시교통연구본부) ;
  • 고경준 (한국철도기술연구원 미래전략센터) ;
  • 장동욱 (한국철도기술연구원 광역도시교통연구본부)
  • Received : 2015.10.08
  • Accepted : 2015.11.06
  • Published : 2015.11.30

Abstract

The raise of the acceleration can be one of possible methods to increase the scheduled speed of the metropolitan railway system. It is possible to raise the acceleration to the some point by increasing the traction power of the motor. However, there is a limit of the acceleration because the traction power over some level related to the adhesion causes a slip, which prevents from accomplishing the target acceleration. The running resistance is also an important factor to consider. Both the adhesion and the running resistance as well as the traction power vary according to the velocity. Therefore, the standardization of the acceleration needs the analysis of these factors as a function of velocity. In this study, we focus on the advanced urban transit unit(AUTS) for the standardization. We derive a novel equation of the adhesion suitable for the AUTS by investigation of the traction and adhesion equation as well as the experiment data. And finally we propose the standard of the acceleration based on this analysis.

도시철도의 표정속도를 증가시키기 위한 여러 가지 방법 중 가속도를 높이는 방법이 있다. 전동기의 견인력을 높이면 일정 목표 수준까지는 가속도를 향상시킬 수 있으나 점착력 제한 등으로 어느 수준 이상에서는 슬립이 발생하여 목표 가속도를 낼 수 없게 된다. 주행저항도 목표 가속도 선정 시 고려해야 할 요소이다. 견인력과 점착력 및 주행저항은 속도에 따라 변하는 함수이므로 가속도 규격을 선정하기 위해서는 속도에 따른 견인력, 점착력, 주행저항 등의 변화에 대한 분석이 필요하다. 본 연구에서는 차세대전동차를 대상으로 하였는데 이 전동차의 경우 전두부가 유선형이고 1C1M 방식의 모터제어를 수행하므로 기존의 주행저항 수식과 점착력 수식을 적용하는 것은 적합하지 않다. 따라서, 본 연구에서는 견인력과 점착력 수식으로부터 가속도 제한을 구하고 실제 시험 결과와 비교하여 대상 전동차에 맞는 점착력 수식을 도출한다. 이를 바탕으로 차세대전동차의 M카, T카 편성을 변경할 경우 수치적으로 가능한 최대 가속도 규격을 도출한다. 이렇게 이론적 한계를 제시함으로써 실제 가속도 규격 선정 시 도움이 될 수 있도록 한다.

Keywords

References

  1. M.S. Kim, J. Kim, T. Kim, S.S. Park, and et al., "Study of the metropolitan rapid transport system to minimize sidetrack construction", Journal of the Korean Society for Railway, Vol. 16, No. 5, pp. 402-409, 2013. DOI: http://dx.doi.org/10.7782/JKSR.2013.16.5.402
  2. S.K. Lee, "A study on optimal design of traction motor power for urban transit", Master Degree Thesis, Hanyang University. 2010.
  3. H.J. Jeon, C.H. Kim, and J.H. Lim, "Test and traction characteristic of electric locomotives", Proceedings of the Conference of the Korean Society for Railway, Jeju, pp. 40-47, 2007.
  4. Y. Kim, S. Kim, K. Kim, and J. Mok, "Study on the Deduction of Traction/Braking Forces for the Train from Acceleration/Deceleration", Journal of the Korean Society for Railway, Vol. 9, No. 6, pp. 682-688, 2006.
  5. D. Choi, C.S. Jeon, H. Cho, H.K. Oh, and S. Kim, "The relationship between train weight and acceleration for the Korea's next generation electric multiple unit train", Proceedings of the Conference of the Korean Society for Railway, Daegu, pp. 470-474, 2013.
  6. J.S. Hong, G.D. Kim, C.M. Lee, J.U. Won, A.H. Lee, and C.W. Sung, "Performance tests result and consideration for AUTS(Advanced Urban Transit System)", Proceedings of the Conference of the Korean Society for Railway, Hoengseong, pp. 1092-1096, 2011.
  7. S.H. Hwang and G.H. Shin, "Test for Adhesion Coefficient using small-scale wheel and rail rig", Proceedings of the Conference of the Korean Society for Railway, Mokpo, pp. 1552-1556, 2012.
  8. Mechanic word compilation council, "Mechanical Engineering Word Dictionary", Sungandang, Seoul, 2009.
  9. Electrical railroad compilation council, "Electrical railroad handbook", Koronasha, Tokyo, 2007.
  10. N.W. Baek, B.S. Lee, S.H. Lee and B.B. Kang, "Railroad train system engineering", GoldenBell, Seoul, 2012.
  11. M. Miyamoto, "Illustrated science and rail", Kodansha, Tokyo, 2006
  12. N.W. Baeg and S.J. Lee, "Railroad Dictionary", Golden Bell, Seoul, 2007.
  13. C. Park, S. Kim, K. Kim, and Y. Kim, "Discussion about measuring methods of resistance to motion for railway vehicle", Proceedings of the Conference of the Korean Society for Railway, Jeju, pp. 2782-2787, 2009.
  14. G.D. Kim, "Final report of the development project for the advanced urban transit system technologies", Korea Railroad Research Institute, Construction & transportation R&D report, Korea Railroad Research Institute, Uiwang, 2011.
  15. Y.J. Son, M.S. Song, H.S. Lee, and S.W. Hwang, "New edition - railroad train engineering", Gumibook, Seoul, 2011.
  16. S.W. Yang, et al., "Design guideline for the urban electric train", Korail Research Institute, A study on the design specification for the train, 2012.
  17. J.M. Lee, H.M. Lee, G.D. Kim, and A.S. No, "Development and testing of next generation electric vehicle propulsion system", Proceedings of the Summer Conference of the Korean Institute of Electrical Engineers, Yongpyeong, pp. 20-22, 2011.
  18. W.S. Kim, Y.S. Kim, and S.K. Sul, "Improvement of re-adhesion control performance using estimation of maximum adhesive force", Proceedings of the Summer Conference of the Korean Institute of Electrical Engineers, Incheon, pp. 163-167, 1998.