DOI QR코드

DOI QR Code

금 전극위에 DNA 분자의 정렬에 관한 연구

Directed Alignment of DNA Molecule between the gold electrodes

  • Hwang, Hyun Suk (Dept. of Electrical Engineering, Seoil University) ;
  • Kim, Hyung Jin (Gumi Electronics and Information Technology Research Institute)
  • 투고 : 2015.06.10
  • 심사 : 2015.08.06
  • 발행 : 2015.08.31

초록

본 논문에서는 DNA 분자를 나노 소자에 응용하기 위하여, 금 전극 사이에 DNA 분자를 간단하고 효율적으로 정렬하기 위한 연구를 수행하였다. DNA를 코팅한 나노소자의 제작을 위하여 $SiO_2/Si$ 기판위에 photo-lithograpy 공정에 의해 형성되어진 금 전극 위에 2-Aminoethanthiol(AET)을 코팅하였다. AET는 양전하를 띄는 $NH^{3+}$를 가지고 있어서 음전하를 띄는 DNA 분자와 정전기적 상호 작용에 의하여 강하게 결합하게 된다. 이러한 원리에 의해 AET가 코팅 되어진 금 전극(AET-금 전극) 사이에 DNA 용액을 도포함으로서 금 전극들 사이에 DNA 분자를 간단하고 효율적으로 정렬시킬 수 있다. 두 전극 사이에 정렬되어진 DNA 분자는 AFM(Atomic force microscope)을 이용하여 조사하였으며, Au 전극 위에 코팅되어지는 AET 농도 변화에 따라 두 전극 사이에 정렬되어지는 DNA-bridge가 단일 형태에서 번들 형태로 변화하는 것을 확인하였다.

In this paper, the directed alignment methode of the DNA molecule between the Au electrodes was suggested for the application of nano devices. To fabricate the nano device coated DNA, 2-Aminoethanthiol(AET) was coated on Au electrodes which was formed using photo-lithography process on $SiO_2/Si$ substrates. In general, the AET that was a positive charge with $NH^{3+}$ was strongly combined under the electrostatic interaction with DNA molecule which had to be a negative charge. The DNA molecules could be easily aligned between Au electrodes coated with AET. The structures of the DNA molecules were investigated using AFM(Atomic force microscope), they were changed from single types to bundle according to the AET concentrations.

키워드

참고문헌

  1. A. Kingon, "Memories are made of ferroelectric thin films", Nature 401, pp.658, 1999. DOI: http://dx.doi.org/10.1038/44307
  2. A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, R. G. Gordon, M. Lundstrom, and H. Dai, "Carbon Nanotube Field-Effect Transistors With Integrated Ohmic Contacts and High-k Gate Dielectrics", Nano Letter, 4, pp.447, 2004. DOI: http://dx.doi.org/10.1021/nl035185x
  3. O. Akhavan, E. Ghaderi and R. Rahighi, "Toward single-DNA electrochemical biosensing by graphene nanowalls", ACS Nano 6, pp.2904, 2012. DOI: http://dx.doi.org/10.1021/nn300261t
  4. L. Cai, H. Tabata, and T. Kawai, "Self-assembled DNA networks and their electrical conductivity", Appl. Phys. Lett. 77, pp.3105, 2000. DOI: http://dx.doi.org/10.1063/1.1323546
  5. K.-H. Yoo, D.H. Ha, J.-O. Lee, J.W. Park, Jinhee Kim, J. J. Kim, H.-Y. Lee, T. Kawai, and H. Y. Choi, "Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules", Phys. Rev. Lett. 87, pp.19, 2001. DOI: http://dx.doi.org/10.1103/PhysRevLett.87.198102
  6. A. Bezryadin and C. Dkker, "Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters", J. Vac. Sci. Technol. B 15, pp.793, 1997. DOI: http://dx.doi.org/10.1116/1.589411
  7. H. Nakao, H. Hayashi, F. Iwata, H. Karasawa, Koji Hirano, S. Sugiyama and T. Ohtani, "Fabricating and aligning pi-conjugated polymer-functionalized DNA nanowires: atomic force microscopic and scanning near-field optical microscopic studies", Langmuir 21, pp.7945, 2005. DOI: http://dx.doi.org/10.1021/la050145p
  8. H. J. Kim, Y. Roh and B. Hong, "Selective Formation of a Latticed Nanostructure with the Precise Alignment of DNA-Templated Gold Nanowires", Langmuir 26, pp.18315, 2010. DOI: http://dx.doi.org/10.1021/la101086h