DOI QR코드

DOI QR Code

해수환경에서의 차축소재(RSA1) 부식특성 평가

Evaluation of Corrosion Behavior of Railway Axle Material (RSA1) in Seawater

  • 투고 : 2015.06.01
  • 심사 : 2015.08.06
  • 발행 : 2015.08.31

초록

본 연구에서는 철도차량의 차축소재로 사용되는 RSA1 소재에 대한 해수 부식특성 평가를 하였다. 미국재료시험협회에서 규정한 ASTM-D1141에 해당하는 인공해수를 사용하여 3전극 셀 구조를 이용한 동전위 분극법과 임피던스 분광법을 바탕으로 산출된 부식전류밀도와 부식속도는 각각 $18.3{\mu}A/cm2$와 0.217 mm/yr이다. 이 결과에 따르면 철도차량의 일반적인 내구연한인 25년을 가정할 때 한 면에서의 차축부식량은 5mm정도로 예상된다. 패러데이법칙을 바탕으로 한 정전류 부식 가속화 시험을 통해 1,3,4년의 부식양을 인위적으로 형성하였고, 단면적 감소분을 고려하여 인장시험을 시행하였다. 탄성구간에서는 부식에 의한 기계적 특성변화가 관찰되지 않았지만 소재의 연성 값은 부식이 진행 될수록 감소되는 경향을 보였다. 본 연구 결과는 향후 해수환경에서 사용될 철도차량 설계 시 고려할 기초 부식데이타로 활용될 것으로 기대된다.

In this study, we evaluated corrosion behavior of a common rolling stock axle material, RSA1, in seawater. 3-electrode electrochemical cell experiment was conducted using artificial sea water, fabricated according to ASTM-D1141 set by American Society for Testing and Materials, where the corrosion current density and corrosion rate were determined to be $18.3{\mu}A/cm2$ and 0.217 mm/yr, respectively, by employing potentiodynamic test method and impedance spectroscopy method. Considering the fact that life time of railway car is ~25 years, the expected corrosion layer depth is 5mm. Constant-current corrosion test was conducted to accelerate the corrosion process, to reach corrosion periods of 1,3 and 4 years based on Faraday's law, followed by tension tests where the reduced specimen gauge cross-section was re-measured for stress calculation. While no apparent corrosion-related changes in mechanical properties were observed in the elastic regime, the reduction in ductility of the material was found to be increased as the corrosion period increased. The results of this study are expected to be basic corrosion data for the design of rolling stock axles, which will be operated in the sea water environment.

키워드

참고문헌

  1. S. Seo, M. Sagong, J. Kim, Future Railway System Technologies, Korea Society of Civil Engineers, Vol. 61, No. 9, pp. 14-19, 2013
  2. S.H. Drissi, Ph. Refait, M. Abdelmoula, J.-M.R. Genin, The preparation and thermodynamic properties of Fe (II)-Fe(III) hydroxide-carbonate (green rust 2); pourbaix diagram of iron in carbonate-containing aqueous media, Corros. Sci. 37, pp. 2025-4041, 1995 https://doi.org/10.1016/0010-938X(95)00096-3
  3. R.T. Foley, Role of the chloride ion in iron corrosion, Corrosion, Vol. 26, No. 2 pp. 58-70, 1970
  4. Ph. Refait, M. Abdelmoula, J.-M.R. Genin, Mechanisms of formation and structure of green rust on in aqueous corrosion of iron in the presence of chloride ions, Corros. Sci. Vol. 40, No. 9, pp. 1547-1560, 1998. DOI: http://dx.doi.org/10.1016/S0010-938X(98)00066-3
  5. Ph. Refait, J.-M.R. Genin, The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagram of green rust one, Corros. Sci. Vol. 34, No. 5, pp. 797-819, 1993 https://doi.org/10.1016/0010-938X(93)90101-L
  6. J.-M.R. Genin, A.A. Olowe, Ph. Refait, L. Simon, On the stoichiometry and Pourbaix diagram of Fe(II)-Fe(III) hydrixy-sulphate or sulphate-containing green rust 2: An electrochemical and mossbauer spectrospcopy study, Corros. Sci. Vol. 38, No. 10, pp. 1751-1762, 1996 https://doi.org/10.1016/S0010-938X(96)00072-8
  7. S.H. Drissi, Ph. Refait, M. Abdelmoula, J.-M.R. Genin, The preparation and thermodynamic properties of Fe (II)-Fe(III) hydroxide-carbonate (green rust 2); pourbaix diagram of iron in carbonate-containing aqueous media, Corros. Sci. Vol. 37, No. 12, pp. 2025-2041, 1995 https://doi.org/10.1016/0010-938X(95)00096-3
  8. M.J. Kim, S.I. Jang, S.H. Woo, J.G. Kim, and Y.H. Kim, Corrosion Resistance of Ferritic Stainless Steel in Exhaust Condensed Water Containing Aluminum Cations, Corrosion, Vol. 71, No. 3, pp. 285-291, 2015 https://doi.org/10.5006/1408
  9. Denny A. Jones, Principles and Prevention of Corrosion, pp.75-77, PrenticeHall, 1996
  10. Pierre R. Roberge, Corrosion Engineering Principles and Practice, pp. 39-40, 2008