DOI QR코드

DOI QR Code

The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development

  • Oh, Se-Yeong (Department of Pediatrics, Emory University School of Medicine) ;
  • Kim, Ju Young (Department of Pediatrics, Emory University School of Medicine) ;
  • Park, Changwon (Department of Pediatrics, Emory University School of Medicine)
  • 투고 : 2015.12.07
  • 심사 : 2015.12.10
  • 발행 : 2015.12.31

초록

Appropriate vessel development and its coordinated function is essential for proper embryogenesis and homeostasis in the adult. Defects in vessels cause birth defects and are an important etiology of diseases such as cardiovascular disease, tumor and diabetes retinopathy. The accumulative data indicate that ETV2, an ETS transcription factor, performs a potent and indispensable function in mediating vessel development. This review discusses the recent progress of the study of ETV2 with special focus on its regulatory mechanisms and cell fate determining role in developing mouse embryos as well as somatic cells.

키워드

참고문헌

  1. Abedin, M.J., Nguyen, A., Jiang, N., Perry, C.E., Shelton, J.M., Watson, D.K., and Ferdous, A. (2014). Fli1 acts downstream of Etv2 to govern cell survival and vascular homeostasis via positive autoregulation. Circ. Res. 114, 1690-1699. https://doi.org/10.1161/CIRCRESAHA.1134303145
  2. Bartel, F.O., Higuchi, T., and Spyropoulos, D.D. (2000). Mouse models in the study of the Ets family of transcription factors. Oncogene 19, 6443-6454. https://doi.org/10.1038/sj.onc.1204038
  3. Barton, K., Muthusamy, N., Fischer, C., Ting, C.N., Walunas, T.L., Lanier, L.L., and Leiden, J.M. (1998). The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9, 555-563. https://doi.org/10.1016/S1074-7613(00)80638-X
  4. Behrens, A.N., Zierold, C., Shi, X., Ren, Y., Koyano-Nakagawa, N., Garry, D.J., and Martin, C.M. (2014). Sox7 is regulated by ETV2 during cardiovascular development. Stem Cells Dev. 23, 2004-2013. https://doi.org/10.1089/scd.2013.0525
  5. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235-242. https://doi.org/10.1093/nar/28.1.235
  6. Bertrand, J.Y., Chi, N.C., Santoso, B., Teng, S., Stainier, D.Y., and Traver, D. (2010). Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108-111. https://doi.org/10.1038/nature08738
  7. Boisset, J.C., van Cappellen, W., Andrieu-Soler, C., Galjart, N., Dzierzak, E., and Robin, C. (2010). In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116-120. https://doi.org/10.1038/nature08764
  8. Bondue, A., Lapouge, G., Paulissen, C., Semeraro, C., Iacovino, M., Kyba, M., and Blanpain, C. (2008). Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3, 69-84. https://doi.org/10.1016/j.stem.2008.06.009
  9. Brown, T.A., and McKnight, S.L. (1992). Specificities of proteinprotein and protein-DNA interaction of GABP alpha and two newly defined ets-related proteins. Genes Dev. 6, 2502-2512. https://doi.org/10.1101/gad.6.12b.2502
  10. Caprioli, A., Koyano-Nakagawa, N., Iacovino, M., Shi, X., Ferdous, A., Harvey, R.P., Olson, E.N., Kyba, M., and Garry, D.J. (2011). Nkx2-5 represses Gata1 gene expression and modulates the cellular fate of cardiac progenitors during embryogenesis. Circulation 123, 1633-1641. https://doi.org/10.1161/CIRCULATIONAHA.110.008185
  11. Carmeliet, P., and Jain, R.K. (2011). Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298-307. https://doi.org/10.1038/nature10144
  12. Choi, K. (2002). The hemangioblast: a common progenitor of hematopoietic and endothelial cells. J. Hematother. Stem Cell Res. 11, 91-101. https://doi.org/10.1089/152581602753448568
  13. Chung, Y.S., Zhang, W.J., Arentson, E., Kingsley, P.D., Palis, J., and Choi, K. (2002). Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression. Development 129, 5511-5520. https://doi.org/10.1242/dev.00149
  14. Ciau-Uitz, A., Wang, L., Patient, R., and Liu, F. (2013). ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol. Dis. 51, 248-255. https://doi.org/10.1016/j.bcmd.2013.07.010
  15. Cohen, D.E., and Melton, D. (2011). Turning straw into gold: directing cell fate for regenerative medicine. Nat. Rev. Genet. 12, 243-252. https://doi.org/10.1038/nrg2938
  16. Craig, M.P., Grajevskaja, V., Liao, H.K., Balciuniene, J., Ekker, S.C., Park, J.S., Essner, J.J., Balciunas, D., and Sumanas, S. (2015). Etv2 and fli1b function together as key regulators of vasculogenesis and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 35, 865-876. https://doi.org/10.1161/ATVBAHA.114.304768
  17. De Haro, L., and Janknecht, R. (2002). Functional analysis of the transcription factor ER71 and its activation of the matrix metalloproteinase-1 promoter. Nucleic Acids Res. 30, 2972-2979. https://doi.org/10.1093/nar/gkf390
  18. De Haro, L., and Janknecht, R. (2005). Cloning of the murine ER71 gene (Etsrp71) and initial characterization of its promoter. Genomics 85, 493-502. https://doi.org/10.1016/j.ygeno.2004.12.003
  19. De Val, S., Chi, N.C., Meadows, S.M., Minovitsky, S., Anderson, J.P., Harris, I.S., Ehlers, M.L., Agarwal, P., Visel, A., Xu, S.M., et al. (2008). Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell 135, 1053-1064. https://doi.org/10.1016/j.cell.2008.10.049
  20. Dejana, E., Taddei, A., and Randi, A.M. (2007). Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochim. Biophys. ACTA 1775, 298-312.
  21. Drake, C.J., and Fleming, P.A. (2000). Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95, 1671-1679.
  22. Ema, M., Faloon, P., Zhang, W.J., Hirashima, M., Reid, T., Stanford, W.L., Orkin, S., Choi, K., and Rossant, J. (2003). Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. Genes Dev. 17, 380-393. https://doi.org/10.1101/gad.1049803
  23. Ema, M., Takahashi, S., and Rossant, J. (2006). Deletion of the selection cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. Blood 107, 111-117. https://doi.org/10.1182/blood-2005-05-1970
  24. Faloon, P., Arentson, E., Kazarov, A., Deng, C.X., Porcher, C., Orkin, S., and Choi, K. (2000). Basic fibroblast growth factor positively regulates hematopoietic development. Development 127, 1931-1941.
  25. Ferdous, A., Caprioli, A., Iacovino, M., Martin, C.M., Morris, J., Richardson, J.A., Latif, S., Hammer, R.E., Harvey, R.P., Olson, E.N., et al. (2009). Nkx2-5 transactivates the Ets-related protein 71 gene and specifies an endothelial/endocardial fate in the developing embryo. Proc. Natl. Acad. Sci. USA 106, 814-819. https://doi.org/10.1073/pnas.0807583106
  26. Findlay, V.J., LaRue, A.C., Turner, D.P., Watson, P.M., and Watson, D.K. (2013). Understanding the role of ETS-mediated gene regulation in complex biological processes. Adv. Cancer Res. 119, 1-61. https://doi.org/10.1016/B978-0-12-407190-2.00001-0
  27. Flamme, I., Frolich, T., and Risau, W. (1997). Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J. Cell. Physiol. 173, 206-210. https://doi.org/10.1002/(SICI)1097-4652(199711)173:2<206::AID-JCP22>3.0.CO;2-C
  28. Frum, T., and Ralston, A. (2015). Cell signaling and transcription factors regulating cell fate during formation of the mouse blastocyst. Trends Genet. 31, 402-410. https://doi.org/10.1016/j.tig.2015.04.002
  29. Ginsberg, M., James, D., Ding, B.S., Nolan, D., Geng, F., Butler, J.M., Schachterle, W., Pulijaal, V.R., Mathew, S., Chasen, S.T., et al. (2012). Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFbeta suppression. Cell 151, 559-575. https://doi.org/10.1016/j.cell.2012.09.032
  30. Gurdon, J.B. (2006). From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Ann. Rev. Cell Devel. Biol. 22, 1-22. https://doi.org/10.1146/annurev.cellbio.22.090805.140144
  31. Haar, J.L., and Ackerman, G.A. (1971). A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. The Anatomical Record 170, 199-223. https://doi.org/10.1002/ar.1091700206
  32. Han, J.K., Chang, S.H., Cho, H.J., Choi, S.B., Ahn, H.S., Lee, J., Jeong, H., Youn, S.W., Lee, H.J., Kwon, Y.W., et al. (2014). Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation 130, 1168-1178. https://doi.org/10.1161/CIRCULATIONAHA.113.007727
  33. Hart, A., Melet, F., Grossfeld, P., Chien, K., Jones, C., Tunnacliffe, A., Favier, R., and Bernstein, A. (2000). Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13, 167-177. https://doi.org/10.1016/S1074-7613(00)00017-0
  34. Hatakeyama, J., and Kageyama, R. (2004). Retinal cell fate determination and bHLH factors. Semin. Cell Devel. Biol. 15, 83-89. https://doi.org/10.1016/j.semcdb.2003.09.005
  35. Hayashi, M., Pluchinotta, M., Momiyama, A., Tanaka, Y., Nishikawa, S., and Kataoka, H. (2012). Endothelialization and altered hematopoiesis by persistent Etv2 expression in mice. Exp. Hematol. 40, 738-750 e711. https://doi.org/10.1016/j.exphem.2012.05.012
  36. Hirata, H., Kawamata, S., Murakami, Y., Inoue, K., Nagahashi, A., Tosaka, M., Yoshimura, N., Miyamoto, Y., Iwasaki, H., Asahara, T., et al. (2007). Coexpression of platelet-derived growth factor receptor alpha and fetal liver kinase 1 enhances cardiogenic potential in embryonic stem cell differentiation in vitro. J. Biosci. Bioeng. 103, 412-419. https://doi.org/10.1263/jbb.103.412
  37. Hollenhorst, P.C., Jones, D.A., and Graves, B.J. (2004). Expression profiles frame the promoter specificity dilemma of the ETS family of transcription factors. Nucleic Acids Res. 32, 5693-5702. https://doi.org/10.1093/nar/gkh906
  38. Hollenhorst, P.C., McIntosh, L.P., and Graves, B.J. (2011). Genomic and biochemical insights into the specificity of ETS transcription factors. Ann. Rev. Biochem. 80, 437-471. https://doi.org/10.1146/annurev.biochem.79.081507.103945
  39. Huang, P., He, Z., Ji, S., Sun, H., Xiang, D., Liu, C., Hu, Y., Wang, X., and Hui, L. (2011). Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475, 386-389. https://doi.org/10.1038/nature10116
  40. Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., and Srivastava, D. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375-386. https://doi.org/10.1016/j.cell.2010.07.002
  41. Iwafuchi-Doi, M., and Zaret, K.S. (2014). Pioneer transcription factors in cell reprogramming. Genes Dev. 28, 2679-2692. https://doi.org/10.1101/gad.253443.114
  42. Jain, R.K. (2003). Molecular regulation of vessel maturation. Nat. Med. 9, 685-693. https://doi.org/10.1038/nm0603-685
  43. Johnson, N.C., Dillard, M.E., Baluk, P., McDonald, D.M., Harvey, N.L., Frase, S.L., and Oliver, G. (2008). Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 22, 3282-3291. https://doi.org/10.1101/gad.1727208
  44. Kataoka, H., Hayashi, M., Nakagawa, R., Tanaka, Y., Izumi, N., Nishikawa, S., Jakt, M.L., Tarui, H., and Nishikawa, S. (2011). Etv2/ER71 induces vascular mesoderm from Flk1+PDGFRalpha+ primitive mesoderm. Blood 118, 6975-6986. https://doi.org/10.1182/blood-2011-05-352658
  45. Kim, H., Nguyen, V.P., Petrova, T.V., Cruz, M., Alitalo, K., and Dumont, D.J. (2010). Embryonic vascular endothelial cells are malleable to reprogramming via Prox1 to a lymphatic gene signature. BMC Dev. Biol. 10, 72. https://doi.org/10.1186/1471-213X-10-72
  46. Kim, J.Y., Lee, R.H., Kim, T.M., Kim, D.W., Jeon, Y.J., Huh, S.H., Oh, S.Y., Kyba, M., Kataoka, H., Choi, K., et al. (2014). OVOL2 is a critical regulator of ER71/ETV2 in generating FLK1+, hematopoietic, and endothelial cells from embryonic stem cells. Blood 124, 2948-2952. https://doi.org/10.1182/blood-2014-03-556332
  47. Kissa, K., and Herbomel, P. (2010). Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112-115. https://doi.org/10.1038/nature08761
  48. Knoepfler, P.S. (2009). Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27, 1050-1056. https://doi.org/10.1002/stem.37
  49. Kodandapani, R., Pio, F., Ni, C.Z., Piccialli, G., Klemsz, M., McKercher, S., Maki, R.A., Ely, K.R. (1996). A new pattern for helix-turn-helix recognition revealed by the PU.1 ETS-domain-DNA complex. Nature 380, 456-460. https://doi.org/10.1038/380456a0
  50. Koyano-Nakagawa, N., Kweon, J., Iacovino, M., Shi, X., Rasmussen, T.L., Borges, L., Zirbes, K.M., Li, T., Perlingeiro, R.C., Kyba, M., et al. (2012). Etv2 is expressed in the yolk sac hematopoietic and endothelial progenitors and regulates Lmo2 gene expression. Stem Cells 30, 1611-1623. https://doi.org/10.1002/stem.1131
  51. Kume, T., Jiang, H., Topczewska, J.M., and Hogan, B.L. (2001). The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev. 15, 2470-2482. https://doi.org/10.1101/gad.907301
  52. Lee, D., Park, C., Lee, H., Lugus, J.J., Kim, S.H., Arentson, E., Chung, Y.S., Gomez, G., Kyba, M., Lin, S., et al. (2008). ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2, 497-507. https://doi.org/10.1016/j.stem.2008.03.008
  53. Lee, D., Kim, T., and Lim, D.S. (2011). The Er71 is an important regulator of hematopoietic stem cells in adult mice. Stem Cells 29, 539-548. https://doi.org/10.1002/stem.597
  54. Lee, S., Park, C., Han, J.W., Kim, J.Y., Cho, K., Kim, E.J., Kim, S., Lee, S.-J., An, H.J., Sin, M.Y., et al. (2014). Abstract 18205: Direct Reprogramming of Human Dermal Fibroblasts into Endothelial Cells Using a Single Transcription Factor. Circulation 130, A18205.
  55. Lindsley, R.C., Gill, J.G., Murphy, T.L., Langer, E.M., Cai, M., Mashayekhi, M., Wang, W., Niwa, N., Nerbonne, J.M., Kyba, M., et al. (2008). Mesp1 coordinately regulates cardiovascular fate restriction and epithelial-mesenchymal transition in differentiating ESCs. Cell Stem Cell 3, 55-68. https://doi.org/10.1016/j.stem.2008.04.004
  56. Liu, F., Kang, I., Park, C., Chang, L.W., Wang, W., Lee, D., Lim, D.S., Vittet, D., Nerbonne, J.M., and Choi, K. (2012). ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling. Blood 119, 3295-3305. https://doi.org/10.1182/blood-2012-01-403766
  57. Liu, F., Bhang, S.H., Arentson, E., Sawada, A., Kim, C.K., Kang, I., Yu, J., Sakurai, N., Kim, S.H., Yoo, J.J., et al. (2013). Enhanced hemangioblast generation and improved vascular repair and regeneration from embryonic stem cells by defined transcription factors. Stem Cell Rep. 1, 166-182. https://doi.org/10.1016/j.stemcr.2013.06.005
  58. Liu, F., Li, D., Yu, Y.Y., Kang, I., Cha, M.J., Kim, J.Y., Park, C., Watson, D.K., Wang, T., and Choi, K. (2015). Induction of hematopoietic and endothelial cell program orchestrated by ETS transcription factor ER71/ETV2. EMBO Rep. 16, 654-669. https://doi.org/10.15252/embr.201439939
  59. Lugus, J.J., Chung, Y.S., Mills, J.C., Kim, S.I., Grass, J., Kyba, M., Doherty, J.M., Bresnick, E.H., and Choi, K. (2007). GATA2 functions at multiple steps in hemangioblast development and differentiation. Development 134, 393-405. https://doi.org/10.1242/dev.02731
  60. Lyons, I., Parsons, L.M., Hartley, L., Li, R., Andrews, J.E., Robb, L., and Harvey, R.P. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9, 1654-1666. https://doi.org/10.1101/gad.9.13.1654
  61. Meadows, S.M., Myers, C.T., and Krieg, P.A. (2011). Regulation of endothelial cell development by ETS transcription factors. Semin. Cell Dev. Biol. 22, 976-984. https://doi.org/10.1016/j.semcdb.2011.09.009
  62. Moore, J.C., Sheppard-Tindell, S., Shestopalov, I.A., Yamazoe, S., Chen, J.K., and Lawson, N.D. (2013). Post-transcriptional mechanisms contribute to Etv2 repression during vascular development. Dev. Biol. 384, 128-140. https://doi.org/10.1016/j.ydbio.2013.08.028
  63. Morita, R., Suzuki, M., Kasahara, H., Shimizu, N., Shichita, T., Sekiya, T., Kimura, A., Sasaki, K., Yasukawa, H., and Yoshimura, A. (2015). ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc. Natl. Acad. Sci. USA 112, 160-165. https://doi.org/10.1073/pnas.1413234112
  64. Motoike, T., Markham, D.W., Rossant, J., and Sato, T.N. (2003). Evidence for novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis 35, 153-159. https://doi.org/10.1002/gene.10175
  65. Mozaffarian, D., Benjamin, E.J., Go, A.S., Arnett, D.K., Blaha, M.J., Cushman, M., de Ferranti, S., Despres, J.P., Fullerton, H.J., Howard, V.J., et al. (2015). Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation 131, e29-322. https://doi.org/10.1161/CIR.0000000000000152
  66. Neuhaus, H., Muller, F., and Hollemann, T. (2010). Xenopus er71 is involved in vascular development. Dev. Dyn. 239, 3436-3445. https://doi.org/10.1002/dvdy.22487
  67. Palencia-Desai, S., Kohli, V., Kang, J., Chi, N.C., Black, B.L., and Sumanas, S. (2011). Vascular endothelial and endocardial progenitors differentiate as cardiomyocytes in the absence of Etsrp/Etv2 function. Development 138, 4721-4732. https://doi.org/10.1242/dev.064998
  68. Palis, J., Robertson, S., Kennedy, M., Wall, C., and Keller, G. (1999). Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126, 5073-5084.
  69. Pang, Z.P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D.R., Yang, T.Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T.C., et al. (2011). Induction of human neuronal cells by defined transcription factors. Nature 476, 220-223. https://doi.org/10.1038/nature10202
  70. Park, C., Kim, T.M., and Malik, A.B. (2013). Transcriptional regulation of endothelial cell and vascular development. Circ. Res. 112, 1380-1400. https://doi.org/10.1161/CIRCRESAHA.113.301078
  71. Park, C., Lee, T.J., Bhang, S.H., Liu, F., Nakamura, R., Oladipupo, S.S., Pitha-Rowe, I., Capoccia, B., Choi, H.S., Kim, T.M., et al. (2015). Injury-Mediated Vascular Regeneration Requires Endothelial ER71/ETV2. Arteriosclerosis, thrombosis, and vascular biology. Nov 19. pii: ATVBAHA.115.306430. [Epub ahead of print]
  72. Patan, S. (2004). Vasculogenesis and angiogenesis. Cancer Treat. Res. 117, 3-32. https://doi.org/10.1007/978-1-4419-8871-3_1
  73. Pham, V.N., Lawson, N.D., Mugford, J.W., Dye, L., Castranova, D., Lo, B., and Weinstein, B.M. (2007). Combinatorial function of ETS transcription factors in the developing vasculature. Dev. Biol. 303, 772-783. https://doi.org/10.1016/j.ydbio.2006.10.030
  74. Randi, A.M., Sperone, A., Dryden, N.H., and Birdsey, G.M. (2009). Regulation of angiogenesis by ETS transcription factors. Biochem. Soc. Trans. 37, 1248-1253. https://doi.org/10.1042/BST0371248
  75. Rasmussen, T.L., Kweon, J., Diekmann, M.A., Belema-Bedada, F., Song, Q., Bowlin, K., Shi, X., Ferdous, A., Li, T., Kyba, M., et al. (2011). ER71 directs mesodermal fate decisions during embryogenesis. Development 138, 4801-4812. https://doi.org/10.1242/dev.070912
  76. Sakurai, H., Era, T., Jakt, L.M., Okada, M., Nakai, S., Nishikawa, S., and Nishikawa, S. (2006). In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. Stem Cells 24, 575-586. https://doi.org/10.1634/stemcells.2005-0256
  77. Schoenebeck, J.J., Keegan, B.R., and Yelon, D. (2007). Vessel and blood specification override cardiac potential in anterior mesoderm. Dev. Cell 13, 254-267. https://doi.org/10.1016/j.devcel.2007.05.012
  78. Sekiya, S., and Suzuki, A. (2011). Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475, 390-393. https://doi.org/10.1038/nature10263
  79. Seo, S., Fujita, H., Nakano, A., Kang, M., Duarte, A., and Kume, T. (2006). The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev. Biol. 294, 458-470. https://doi.org/10.1016/j.ydbio.2006.03.035
  80. Sharrocks, A.D. (2001). The ETS-domain transcription factor family. Nat. Rev. Mol. Cell. Biol. 2, 827-837. https://doi.org/10.1038/35099076
  81. Shi, X., Richard, J., Zirbes, K.M., Gong, W., Lin, G., Kyba, M., Thomson, J.A., Koyano-Nakagawa, N., and Garry, D.J. (2014). Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Dev. Biol. 389, 208-218. https://doi.org/10.1016/j.ydbio.2014.02.018
  82. Shi, X., Zirbes, K.M., Rasmussen, T.L., Ferdous, A., Garry, M.G., Koyano-Nakagawa, N., and Garry, D.J. (2015). The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J. Biol. Chem. 290, 9614-9625. https://doi.org/10.1074/jbc.M114.614628
  83. Simoes, F.C., Peterkin, T., and Patient, R. (2011). Fgf differentially controls cross-antagonism between cardiac and haemangioblast regulators. Development 138, 3235-3245. https://doi.org/10.1242/dev.059634
  84. Song, K., Nam, Y.J., Luo, X., Qi, X., Tan, W., Huang, G.N., Acharya, A., Smith, C.L., Tallquist, M.D., Neilson, E.G., et al. (2012). Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485, 599-604. https://doi.org/10.1038/nature11139
  85. Spyropoulos, D.D., Pharr, P.N., Lavenburg, K.R., Jackers, P., Papas, T.S., Ogawa, M., and Watson, D.K. (2000). Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol. Cell. Biol. 20, 5643-5652. https://doi.org/10.1128/MCB.20.15.5643-5652.2000
  86. Stainier, D.Y., Weinstein, B.M., Detrich, H.W., 3rd, Zon, L.I., and Fishman, M.C. (1995). Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 3141-3150.
  87. Stenman, J.M., Rajagopal, J., Carroll, T.J., Ishibashi, M., McMahon, J., and McMahon, A.P. (2008). Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322, 1247-1250. https://doi.org/10.1126/science.1164594
  88. Sumanas, S., and Lin, S. (2006). Ets1-related protein is a key regulator of vasculogenesis in zebrafish. PLoS Biol. 4, e10.
  89. Sumanas, S., Jorniak, T., and Lin, S. (2005). Identification of novel vascular endothelial-specific genes by the microarray analysis of the zebrafish cloche mutants. Blood 106, 534-541. https://doi.org/10.1182/blood-2004-12-4653
  90. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  91. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872. https://doi.org/10.1016/j.cell.2007.11.019
  92. Takeuchi, M., Fuse, Y., Watanabe, M., Andrea, C.S., Takeuchi, M., Nakajima, H., Ohashi, K., Kaneko, H., Kobayashi-Osaki, M., Yamamoto, M., et al. (2015). LSD1/KDM1A promotes hematopoietic commitment of hemangioblasts through downregulation of Etv2. Proc. Natl. Acad. Sci. USA 112, 13922-13927. https://doi.org/10.1073/pnas.1517326112
  93. Tanaka, M., Chen, Z., Bartunkova, S., Yamasaki, N., and Izumo, S. (1999). The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126, 1269-1280.
  94. Tsai, F.Y., and Orkin, S.H. (1997). Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89, 3636-3643.
  95. Tsai, F.Y., Keller, G., Kuo, F.C., Weiss, M., Chen, J., Rosenblatt, M., Alt, F.W., and Orkin, S.H. (1994). An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221-226. https://doi.org/10.1038/371221a0
  96. Unezaki, S., Horai, R., Sudo, K., Iwakura, Y., and Ito, S. (2007). Ovol2/Movo, a homologue of Drosophila ovo, is required for angiogenesis, heart formation and placental development in mice. Genes Cells 12, 773-785.
  97. Veldman, M.B., and Lin, S. (2012). Etsrp/Etv2 is directly regulated by Foxc1a/b in the zebrafish angioblast. Circ. Res. 110, 220-229. https://doi.org/10.1161/CIRCRESAHA.111.251298
  98. Veldman, M.B., Zhao, C., Gomez, G.A., Lindgren, A.G., Huang, H., Yang, H., Yao, S., Martin, B.L., Kimelman, D., and Lin, S. (2013). Transdifferentiation of fast skeletal muscle into functional endothelium in vivo by transcription factor Etv2. PLoS Biol. 11, e1001590. https://doi.org/10.1371/journal.pbio.1001590
  99. Verger, A., and Duterque-Coquillaud, M. (2002). When Ets transcription factors meet their partners. Bioessays 24, 362-370. https://doi.org/10.1002/bies.10068
  100. Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035-1041. https://doi.org/10.1038/nature08797
  101. Waddington, C.H. (1957). The strategy of the genes; a discussion of some aspects of theoretical biology (London,: Allen & Unwin).
  102. Wang, L.C., Kuo, F., Fujiwara, Y., Gilliland, D.G., Golub, T.R., and Orkin, S.H. (1997). Yolk sac angiogenic defect and intraembryonic apoptosis in mice lacking the Ets-related factor TEL. EMBO J. 16, 4374-4383. https://doi.org/10.1093/emboj/16.14.4374
  103. Wei, G., Srinivasan, R., Cantemir-Stone, C.Z., Sharma, S.M., Santhanam, R., Weinstein, M., Muthusamy, N., Man, A.K., Oshima, R.G., Leone, G., et al. (2009). Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood 114, 1123-1130. https://doi.org/10.1182/blood-2009-03-211391
  104. Weintraub, H., Tapscott, S.J., Davis, R.L., Thayer, M.J., Adam, M.A., Lassar, A.B., and Miller, A.D. (1989). Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86, 5434-5438. https://doi.org/10.1073/pnas.86.14.5434
  105. Weintraub, H., Davis, R., Tapscott, S., Thayer, M., Krause, M., Benezra, R., Blackwell, T.K., Turner, D., Rupp, R., Hollenberg, S., et al. (1991). The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761-766. https://doi.org/10.1126/science.1846704
  106. Xie, H., Ye, M., Feng, R., and Graf, T. (2004). Stepwise reprogramming of B cells into macrophages. Cell 117, 663-676. https://doi.org/10.1016/S0092-8674(04)00419-2
  107. Yamamizu, K., Matsunaga, T., Katayama, S., Kataoka, H., Takayama, N., Eto, K., Nishikawa, S., and Yamashita, J.K. (2012). PKA/CREB signaling triggers initiation of endothelial and hematopoietic cell differentiation via Etv2 induction. Stem Cells 30, 687-696. https://doi.org/10.1002/stem.1041
  108. Yamashita, J., Itoh, H., Hirashima, M., Ogawa, M., Nishikawa, S., Yurugi, T., Naito, M., Nakao, K., and Nishikawa, S. (2000). Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92-96. https://doi.org/10.1038/35040568
  109. Zovein, A.C., Hofmann, J.J., Lynch, M., French, W.J., Turlo, K.A., Yang, Y., Becker, M.S., Zanetta, L., Dejana, E., Gasson, J.C., et al. (2008). Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625-636. https://doi.org/10.1016/j.stem.2008.09.018

피인용 문헌

  1. ETV-2 activated proliferation of endothelial cells and attenuated acute hindlimb ischemia in mice vol.53, pp.7, 2017, https://doi.org/10.1007/s11626-017-0151-4
  2. Etv2 as an essential regulator of mesodermal lineage development 2017, https://doi.org/10.1093/cvr/cvx133
  3. The Hemogenic Competence of Endothelial Progenitors Is Restricted by Runx1 Silencing during Embryonic Development vol.15, pp.10, 2016, https://doi.org/10.1016/j.celrep.2016.05.001
  4. Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2 vol.120, pp.5, 2017, https://doi.org/10.1161/CIRCRESAHA.116.309833
  5. FLI1 and PKC co-activation promote highly efficient differentiation of human embryonic stem cells into endothelial-like cells vol.9, pp.2, 2018, https://doi.org/10.1038/s41419-017-0162-9
  6. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells vol.7, pp.2050-084X, 2018, https://doi.org/10.7554/eLife.36187
  7. Adventitial Sca1+ Cells Transduced With ETV2 Are Committed to the Endothelial Fate and Improve Vascular Remodeling After Injury vol.38, pp.1, 2018, https://doi.org/10.1161/ATVBAHA.117.309853
  8. In vivo transduction of ETV2 improves cardiac function and induces vascular regeneration following myocardial infarction vol.51, pp.2, 2019, https://doi.org/10.1038/s12276-019-0206-6
  9. Etv2-miR-130a-Jarid2 cascade regulates vascular patterning during embryogenesis vol.12, pp.12, 2015, https://doi.org/10.1371/journal.pone.0189010
  10. Regenerating the Cardiovascular System Through Cell Reprogramming; Current Approaches and a Look Into the Future vol.5, pp.None, 2015, https://doi.org/10.3389/fcvm.2018.00109
  11. Conversion of human adipose-derived stem cells into functional and expandable endothelial-like cells for cell-based therapies vol.9, pp.1, 2015, https://doi.org/10.1186/s13287-018-1088-6
  12. Tobacco Heating System 2.2 has a limited impact on DNA methylation of candidate enhancers in mouse lung compared with cigarette smoke vol.123, pp.None, 2019, https://doi.org/10.1016/j.fct.2018.11.020
  13. Taiji: System-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development vol.5, pp.3, 2015, https://doi.org/10.1126/sciadv.aav3262
  14. C-kit signaling promotes human pre-implantation 3PN embryonic development and blastocyst formation vol.17, pp.None, 2015, https://doi.org/10.1186/s12958-019-0521-8
  15. Spatiotemporal Gene Coexpression and Regulation in Mouse Cardiomyocytes of Early Cardiac Morphogenesis vol.8, pp.15, 2015, https://doi.org/10.1161/jaha.119.012941
  16. Endothelial Cell Development and Its Application to Regenerative Medicine vol.125, pp.4, 2015, https://doi.org/10.1161/circresaha.119.311405
  17. ETV2/ER71 regulates the generation of FLK1+ cells from mouse embryonic stem cells through miR-126-MAPK signaling vol.10, pp.1, 2019, https://doi.org/10.1186/s13287-019-1466-8
  18. A Computational Model of the Endothelial to Mesenchymal Transition vol.11, pp.None, 2015, https://doi.org/10.3389/fgene.2020.00040
  19. The lateral plate mesoderm vol.147, pp.12, 2015, https://doi.org/10.1242/dev.175059
  20. The next generation of endothelial differentiation: Tissue-specific ECs vol.28, pp.7, 2021, https://doi.org/10.1016/j.stem.2021.05.002
  21. In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells vol.10, pp.18, 2015, https://doi.org/10.3390/jcm10184161
  22. OCT4-mediated inflammation induces cell reprogramming at the origin of cardiac valve development and calcification vol.7, pp.45, 2015, https://doi.org/10.1126/sciadv.abf7910
  23. Fibroblast transition to an endothelial “trans” state improves cell reprogramming efficiency vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-02056-x
  24. Multi-omics analyses of early liver injury reveals cell-type-specific transcriptional and epigenomic shift vol.22, pp.1, 2021, https://doi.org/10.1186/s12864-021-08173-1