DOI QR코드

DOI QR Code

TiO2 나노입자가 코팅된 다중 벽 탄소 나노튜브의 상온에서의 수소 가스 검출 특성

Hydrogen Sensing Properties of Multiwall Carbon Nanotubes Decorated with TiO2 Nanoparticles at Room Temperature

  • 박성훈 (인하대학교 신소재공학과) ;
  • 강우승 (인하공업전문대학 금속재료과)
  • Park, Sunghoon (Department of Materials Science & Engineering, Inha University) ;
  • Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College)
  • 투고 : 2015.12.08
  • 심사 : 2015.12.22
  • 발행 : 2015.12.31

초록

Multiwall carbon nanotubes are synthesized by using VLS mechanism for the application to $H_2$ gas sensor. MWCNT is not suitable for hydrogen gas sensor due to its low response to the gas. To enhance the gas sensing performance, multiwall carbon nanotubes are coated with $TiO_2$ nanoparticles. Scanning electron microscopy and Transmission electron microscopy showed that the synthesized MWCNT were well dispersed with the diameter and wall thickness of approximately 10-30nm and 5nm, respectively. The MWCNT sensor showed the sensitivities of 1.33-9.5% for the $H_2$ concentration of 100-5000ppm at room temperature. These sensitivities are significantly improved to 6.64-46.65% by coating $TiO_2$ nanoparticles to the MWCNT sensor. The mechanisms of $H_2$ gas sensing improvement of the MWCNT sensor coated with $TiO_2$ nanoparticles are discussed.

키워드

참고문헌

  1. S. Sundarrajan, S.I. Allakhverdiev, S. Ramakrishna, Int. J. Hydrogen Energy 37 (2012) 8765. https://doi.org/10.1016/j.ijhydene.2011.12.017
  2. S. Krishnan, F.A. Armstrong, Chem. Sci. 3 (2012) 1015. https://doi.org/10.1039/c2sc01103d
  3. U. Lange, T. Hirsch, V.M. Mirsky, O.S. Wolfbeis, Electrochim. Acta 56 (2011) 3707. https://doi.org/10.1016/j.electacta.2010.10.078
  4. O. Lupan, L. Chow, Th. Pauporte, L.K. Ono, B.R. Cuenya, G. Chai, Sens. Actuators B: Chem. 173 (2012) 772. https://doi.org/10.1016/j.snb.2012.07.111
  5. S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, C.H. Sow, J. Am. Chem. Soc. 134 (2012) 4905. https://doi.org/10.1021/ja211683m
  6. M. Tonezzer, N.V. Hieu, Sens. Actuators B: Chem. 163 (2012) 146. https://doi.org/10.1016/j.snb.2012.01.022
  7. Y. Paska, H. Haick, ACS Appl. Mater. Interfaces 4 (2012) 2604. https://doi.org/10.1021/am300288z
  8. V. Galstyan, E. Comini, g. Faglia, A. Vomiero, L. Borgese, E. Bontempi, G. Sberveglieri, Nanotechnol. 23 (2012) 235706. https://doi.org/10.1088/0957-4484/23/23/235706
  9. R.A. Rani, A.S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin, K. Kalantar0zadeh, Sens. Actuators B: Chem. 176 (2013) 149. https://doi.org/10.1016/j.snb.2012.09.028
  10. Z.U. Abideen, H.W. Kim, S.S. Kim, Chem. Commun, 51 (2015) 15418. https://doi.org/10.1039/C5CC05370F
  11. Y. Li, H. Wang, L. Xie, Y. Liang, F. Wei, J.-C. Idrobo, S.J. Pennycook, H. Dai, Nat. Nanotechnol. 7 (2012) 394. https://doi.org/10.1038/nnano.2012.72
  12. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, K. Hata, Nat. Nanotechnol. 6 (2011) 296. https://doi.org/10.1038/nnano.2011.36
  13. P. Chen, T.-Y. Xiao, Y.-H. Qian, S.-S. Li, S.-H. Yu, Adv. Mater. 25 (2013) 3192. https://doi.org/10.1002/adma.201300515
  14. J.A. Rather, K. De Wael, Sens. Actuators B: Chem. 176 (2013) 110. https://doi.org/10.1016/j.snb.2012.08.081
  15. D.J. Li, U.N. Maiti, J. Lim, D.S. Choi, W.J. Lee, Y. Oh, G.Y. Lee, S.O. Kim, Nano Lett. 14 (2014) 1228. https://doi.org/10.1021/nl404108a
  16. C. Fang, D. Zhang, S. Cai, L. Zhang, L. Huang, H. Li, P. Maitarad, L. Shi, R. Gao, J. Zhang, Nanoscale 5 (2013) 9199. https://doi.org/10.1039/c3nr02631k
  17. M. Mittal, A. Kumar, Sens. Actuators B: Chem. 203 (214) 349. https://doi.org/10.1016/j.snb.2014.05.080
  18. L. Shen, P. Chen, B. Yan, C. Zhang, Sens. Actuators B: Chem. 215 (2015) 9. https://doi.org/10.1016/j.snb.2015.03.044
  19. M.G. Chung, D.-H. Kim, D.K. Seo, T. Kim, H.U. Im, H.M. Lee, J.-B. Yoo, S.-H. Hong, T.J. Kang, Y.H. Kim, Sens. Actuators B: Chem. 169 (2012) 387. https://doi.org/10.1016/j.snb.2012.05.031
  20. H. Ko, S. Park, S. Park, C. Lee, J. Nanosci. Nanotechnol. 15 (2015) 5295. https://doi.org/10.1166/jnn.2015.10376
  21. A. Sharma, M. Tomar, V. Gupta, J. Mater. Chem. 22 (2012) 23608. https://doi.org/10.1039/c2jm35172b
  22. S. Motshekga, S.K. Pillai, S.S. Ray, J. Nanopart. Res. 13 (2011) 1093. https://doi.org/10.1007/s11051-010-0098-9
  23. S. Trocino, A. Donato, M. Latino, N. Donato, S.G. Leonardi, G. Neri, Sens. 12 (2012) 12361. https://doi.org/10.3390/s120912361
  24. C.E. Cava, R.V. Salvatierra, D.C.B. Alves, A.S. Ferlauto, A.J.G. Zarbin, L.S. Roman, Carbon 50 (2012) 1953. https://doi.org/10.1016/j.carbon.2011.12.048
  25. J.-W. Yoon, J.-Ki. Choi, J.-H. Lee, Sens. Actuators B: Chem. 161 (2012) 570. https://doi.org/10.1016/j.snb.2011.11.002
  26. W. Zeng, T. Liu, Z. Wang, J. Mater. Chem. 22 (2012) 3544. https://doi.org/10.1039/c2jm15017d
  27. Y.-R. Li, C.-Y. Wan, C.-T. Chang, W.-L. Tsai, Y.-C. Huang, K.-Y. Wang, P.-Y. Yang, H.-C. Cheng, Vacuum, 118 (2015) 48. https://doi.org/10.1016/j.vacuum.2015.01.018
  28. C.W. Na, H.-S. Woo, J.-H. Lee, RSC Adv. 2 (2012) 414. https://doi.org/10.1039/C1RA01001H
  29. M. Radecka, A. Kusior, A. Lacz, A. Trenczek-Zajac, B. Lyson-Sypien, K. Zakrzewska, J. Therm. Anal. Calorim. 108 (2012) 1079. https://doi.org/10.1007/s10973-011-1966-y