DOI QR코드

DOI QR Code

Pd 나노입자가 코팅된 β-Bi2O3 나노와이어의 NO2 검출 특성

NO2 Sensing Properties of β-Bi2O3 Nanowires Sensor Coated with Pd Nanoparticles

  • 박성훈 (인하대학교 신소재공학과) ;
  • 강우승 (인하공업전문대학 금속재료과)
  • Park, Sunghoon (Department of Materials Science & Engineering, Inha University) ;
  • Kang, Wooseung (Department of Metallurgical & Materials Engineering, Inha Technical College)
  • 투고 : 2015.12.08
  • 심사 : 2015.12.18
  • 발행 : 2015.12.31

초록

Pd-functionalized ${\beta}-Bi_2O_3$ nanowires are synthesized by thermal evaporation of Bi powder using VLS mechanism followed by Pd coating and annealing. In this study, sensing properties of Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor to selected concentrations of $NO_2$ gas were examined. Scanning electron microscopy showed that the nanowires with diameters in a range of 100 - 200 nm and lengths of up to a few tens of micrometers. Transmission electron microscopy and X-ray diffraction confirmed that the products corresponded to the nanowires of ${\beta}-Bi_2O_3$ crystals and Pd nanoparticles. Pd-functionalized ${\beta}-Bi_2O_3$ nanowires sensor showed an enhanced sensing performance to $NO_2$ gas compared to as-synthesized ${\beta}-Bi_2O_3$ nanowires sensor. As synthesized and Pd-functionalized ${\beta}-Bi_2O_3$ nanowire sensors showed responses of 178% - 338% and 196% - 535% at $300^{\circ}C$, respectively, to 0.05 - 2 ppm $NO_2$. In addition, the underlying mechanism of the enhancement of the sensing properties of ${\beta}-Bi_2O_3$ nanowires by Pd-functionalization is discussed.

키워드

참고문헌

  1. J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, B. Cao, Sens. Actuators B 199 (2014) 339. https://doi.org/10.1016/j.snb.2014.04.010
  2. S. K. Kim, K. D. Song, T. J. Kempa, R. W. Day, C.M. Lieber, H. G. Park, ACS Nano 8 (2014) 3707. https://doi.org/10.1021/nn5003776
  3. F. Qian, H. Wang, Y. Ling, G. Wang, M.P. Thelen, Y. Li, Nano Lett. 14 (2014) 3688. https://doi.org/10.1021/nl501664n
  4. D. Meng, T. Yamazaki, T. Kikuta, Sens. Actuators B 190 (2014) 838. https://doi.org/10.1016/j.snb.2013.09.015
  5. N. D. Chinh, N. V. Toan, V. V. Quang, N. V. Duy, N.D. Hoa, N.V. Hieu, Sens. Actuators B 201 (2014) 7. https://doi.org/10.1016/j.snb.2014.04.095
  6. E. N. Dattoli, A. V. Davydov, K. D. Benkstein, Nanoscale 4 (2012) 1760. https://doi.org/10.1039/c2nr11885h
  7. L. Liao, Y. C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan, Nature 467 (2010) 305. https://doi.org/10.1038/nature09405
  8. M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H.-S. P. Wong, S. Mitra, Nature 501 (2013) 526. https://doi.org/10.1038/nature12502
  9. T. Kato, R. Hatakeyama, Nature Nanotechnol. 7 (2012) 651. https://doi.org/10.1038/nnano.2012.145
  10. S. V. Aert, K. J. Batenburg, M. D. Rossell, R. Erni, G. V. Tendeloo, Nature, 470 (2011) 374. https://doi.org/10.1038/nature09741
  11. J. Tang, Z. Huo, S. Brittman, H. Gao, P. Yang, Nature Nanotechnol. 6 (2011) 568. https://doi.org/10.1038/nnano.2011.139
  12. G. Y. Chai, O. Lupan, E. V. Rusu, G. I. Stratan, V. V. Ursaki, V. Sontea, H. Khallai, L. Chow, Sens. Actuators A 176 (2012) 64. https://doi.org/10.1016/j.sna.2012.01.012
  13. N. Singh, R. K. Gupta, P. S. Lee, ACS Appl. Mater. Interfaces 3 (2011) 2246. https://doi.org/10.1021/am101259t
  14. M. W. G. Hoffmann, J. D. Prades, L. Mayrhofer, F. H. Ramires, T. T. Jarvi, M. Moseler, A. Waag, H. Shen, Adv. Func. Mater. 24 (2014) 595. https://doi.org/10.1002/adfm.201301478
  15. I. S. Hwang, J. K. Choi, H. S. Woo, S. J. Kim, S. Y. Jung, T. Y. Seong, I. D. Kim, J. H. Lee, ACS Appl. Mater. Interfaces 3 (2011) 3140. https://doi.org/10.1021/am200647f
  16. S. K. Blower, C. Greaves, Acta Cryst. C44 (1988) 587.
  17. L. Li, Y. W. Yang, G. H. Li, L. D. Zhang, Small 2 (2006) 548. https://doi.org/10.1002/smll.200500382
  18. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X.B. Zhao, H.J. Fan, ACS Nano 6 (2012) 5531. https://doi.org/10.1021/nn301454q
  19. M. Muruganandham, R. Amutha, G. J. Lee, S. H. Hsieh, J. J. Wu, M. Sillanpaa, J. Phys. Chem. C 116 (2012) 12906. https://doi.org/10.1021/jp302343f
  20. L. Liao, H. X. Mai, Q. Yuan, H. B. Lu, J. C. Li, C. Liu, C. H. Yan, Z. X. Shen, T. Yu, J. Phys. Chem. C 112 (2008) 9061. https://doi.org/10.1021/jp7117778
  21. Q. Wan, T. H. Wang, Chem. Commun. 1 (2005) 3841.
  22. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Nano Lett. 5 (2005) 667. https://doi.org/10.1021/nl050082v
  23. S. Park, S An, H. Ko, C. Jin, C. Lee, Bull. Korean Chem. Soc. 33 (2012) 3368. https://doi.org/10.5012/bkcs.2012.33.10.3368
  24. L. Wu, J. Xia, J. Wu, Q. Li, Ionics 21 (2015) 3239. https://doi.org/10.1007/s11581-015-1510-3
  25. S. Park, S. An, H. Ko, C. Lee, J. Nanosci. Nanotechnol. 15 (2015) 1605. https://doi.org/10.1166/jnn.2015.9304
  26. C. Bedoya, G. G. Condorelli, G. Anatasi, A. Baeri, F. Scerra, I.L. Fragala, J.G. Lisoni, D. Wouters, Chem. Mater. 16 (2004) 3176. https://doi.org/10.1021/cm049836h
  27. S. Park, S. An, H. Ko, C. Lee, J. Nanosci. Nanotechnol. 14 (2014) 1. https://doi.org/10.1166/jnn.2014.9265
  28. M. Ge, Y. Li, L. Liu, Z. Zhou, W. Chen, J. Phys. Chem. C 115 (2011) 5220. https://doi.org/10.1021/jp108414e
  29. L. Armelao, P. Colombo, M. Fabrizio, J. Sol-Gel Sci. Technol. 13 (1998) 213. https://doi.org/10.1023/A:1008660918484
  30. G. Shen, P. Chen, K. Ryu, C. Zhou, J. Mater. Chem. 19 (2009) 828. https://doi.org/10.1039/B816543B
  31. X. Gou, R. Li, G. Wang, Z. Chen, D. Wexler, Nanotechnol. 20 (2009) 495501. https://doi.org/10.1088/0957-4484/20/49/495501
  32. R. K. Joshi, Q. Ju, F. Alvi, N. Joshi, A. Kumar, J. Phys. Chem. C 113 (2009) 16199. https://doi.org/10.1021/jp906458b