DOI QR코드

DOI QR Code

DEM analyses of the mechanical behavior of soil and soil-rock mixture via the 3D direct shear test

  • Xu, Wen-Jie (State Key Laboratory of Hydroscience and Hydraulic Engineering, Department of Hydraulic Engineering, Tsinghua University) ;
  • Li, Cheng-Qing (State Key Laboratory of Hydroscience and Hydraulic Engineering, Department of Hydraulic Engineering, Tsinghua University) ;
  • Zhang, Hai-Yang (State Key Laboratory of Hydroscience and Hydraulic Engineering, Department of Hydraulic Engineering, Tsinghua University)
  • 투고 : 2014.12.17
  • 심사 : 2015.10.31
  • 발행 : 2015.12.25

초록

The mechanical behavior of soil and soil-rock mixture is investigated via the discrete element method. A non-overlapping combination method of spheres is used to model convex polyhedron rock blocks of soil-rock mixture in the DEM simulations. The meso-mechanical parameters of soil and soil-rock interface in DEM simulations are obtained from the in-situ tests. Based on the Voronoi cell, a method representing volumtric strain of the sample at the particle scale is proposed. The numerical results indicate that the particle rotation, occlusion, dilatation and self-organizing force chains are a remarkable phenomena of the localization band for the soil and soil-rock mixture samples. The localization band in a soil-rock mixture is wider than that in the soil sample. The current research shows that the 3D discrete element method can effectively simulate the mechanical behavior of soil and soil-rock mixture.

키워드

과제정보

연구 과제 주관 기관 : Natural Science Foundation of China

참고문헌

  1. Chang, Y.-L., Chu, B.-L. and Lin, S.-S. (2003), "Numerical simulation of gravel deposits using mult-circle granular model", J. Chinese Inst. Eng., 26(5), 681-694. https://doi.org/10.1080/02533839.2003.9670821
  2. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  3. Ergenzinger, C., Seifried, R. and Eberhard, P. (2012), "A discrete element model predicting the strength of ballast stones", Comput. Struct., 108-109, 3-13. https://doi.org/10.1016/j.compstruc.2012.02.006
  4. Evans, T.M. and Frost, J.D. (2010), "Multiscale investigation of shear bands in sand: Physical and numerical experiments", Int. J. Numer. Anal. Method. Geomech., 34(15), 1634-1650. https://doi.org/10.1002/nag.877
  5. Galindo-Torres, S.A. and Pedroso, D.M. (2010), "Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolydra", Phys. Review E, 81, 061303. https://doi.org/10.1103/PhysRevE.81.061303
  6. Garcia, X., Latham, J.-P., Xiang, J. and Harrison, J.P. (2009), "A clustered overlapping sphere algorithm to represent real particles in discrete element modelling", Geotechnique, 59(9), 779-784. https://doi.org/10.1680/geot.8.T.037
  7. Ishida, T., Kanagawa, T. and Kanaori, Y. (2010), "Source distribution of acoustic emissions during an in-situ direct shear test: Implications for an analog model of seismogenic faulting in an inhomogeneous", Eng. Geol., 110(3-4), 66-76. https://doi.org/10.1016/j.enggeo.2009.11.003
  8. Jerier, J.-F., Richefeu, V., Imbault, D. and Donze, F.V. (2010), "Packing spherical discrete elements for large scale simulations", Comput. Method. Appl. Mech. Eng., 199(25-28), 1668-1676. https://doi.org/10.1016/j.cma.2010.01.016
  9. Kozicki, J. and Donze, F.V. (2008), "A new open-source software developed for numerical simulations using discrete modeling methods", Comput. Method. Appl. Mech. Eng., 197(49-50), 4429-4443. https://doi.org/10.1016/j.cma.2008.05.023
  10. Kozicki, J. and Donze, F.V. (2009), "YADE-OPEN DEM: An open-source software using discrete element methods to simulate granular material", Eng. Computat., 26(7), 786-805. https://doi.org/10.1108/02644400910985170
  11. Matsushima, T., Katagiri, J., Uesugi, K., Tsuchiyama, A. and Nakanok, T. (2009), "3D shape characterization and image-based DEM simulation of the lunar soil simulant FJS-1", J. Aerosp. Eng., ASCE, 22(1), 15-23. https://doi.org/10.1061/(ASCE)0893-1321(2009)22:1(15)
  12. Mcdowell, G.R. and Harireche, O. (2002), "Discrete element modelling of yielding and normal compression of sand", Geotechnique, 52(4), 299-304. https://doi.org/10.1680/geot.2002.52.4.299
  13. Morgenstern, N.R. and Tchalenko, J.S. (1967), "Microscopic structure in kaolin subjected to direct shear", Geotechnique, 17(4), 309-328. https://doi.org/10.1680/geot.1967.17.4.309
  14. Oyanguren, P.R., Nicieza, C.G., Fernandez, M.I.A. and Palacio, C.G. (2008), "Stability analysis of Llerin rockfill dam: An in situ direct shear test", Eng. Geol., 100(3-4), 120-130. https://doi.org/10.1016/j.enggeo.2008.02.009
  15. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  16. Rycroft, C.H. (2009), "Voro++: A three-dimensional Voronoi cell library in C++", Chaos, 19, 041111. https://doi.org/10.1063/1.3215722
  17. Scholtes, L. and Donze, F.V. (2012), "Modelling progressive failure in fractured rock masses using a 3D discrete element method", Int. J. Rock Mech. Min. Sci., 52, 18-30. https://doi.org/10.1016/j.ijrmms.2012.02.009
  18. Sullivan, C.O. (2008), "Particle-based discrete element modelling: A geomechanics overview", Proceedings of the 12th International Conference of International Association for Computer Method and Advances in Geomechanics (IACMAG), Goa, India, October, pp. 498-505.
  19. Terzaghi, K. and Peck, R.B. (1848), Soil Mechanics in Engineering Practice, Wiley, New York, NY, USA.
  20. Widulinski, L., Kozicki, J. and Tejchman, J. (2009), "Numerical simulation of triaxial test with sand using DEM", Arch. Hydro-Eng. Environ. Mech., 56(3-4), 149-171.
  21. Xu, W.J. (2008), "Study on meso-structural mechanics(M-SM) of soil-rock mixture (S-RM) and its slope stability", Ph.D. Dissertation; Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China. [In Chinese]
  22. Xu, W.J., Xu, Q. and Hu, R.L. (2011), "Study on the shear strength of soil-rock mixture by large scale direct shear test", Int. J. Rock Mech. Min. Sci., 48(8), 1235-1247. https://doi.org/10.1016/j.ijrmms.2011.09.018

피인용 문헌

  1. Evaluation of Pore Size and Distribution Impacts on Uniaxial Compressive Strength of Lithophysal Rock 2018, https://doi.org/10.1007/s13369-017-2810-x
  2. Distinct Element Modelling of a Landslide Triggered by the 5.12 Wenchuan Earthquake: A Case Study vol.36, pp.4, 2018, https://doi.org/10.1007/s10706-018-0481-3
  3. A review on modelling and monitoring of railway ballast vol.4, pp.3, 2017, https://doi.org/10.12989/smm.2017.4.3.195
  4. Behaviour of a plane joint under horizontal cyclic shear loading vol.13, pp.5, 2015, https://doi.org/10.12989/gae.2017.13.5.809
  5. The investigation of rock cutting simulation based on discrete element method vol.13, pp.6, 2015, https://doi.org/10.12989/gae.2017.13.6.977
  6. Formation Mechanism and Mechanical Properties of Soil-Rock Mixture Containing Macropore vol.2018, pp.None, 2015, https://doi.org/10.1155/2018/1594546
  7. A numerical analysis of the equivalent skeleton void ratio for silty sand vol.17, pp.1, 2019, https://doi.org/10.12989/gae.2019.17.1.019
  8. Evaluation of the shear strength parameters of a compacted S-RM fill using improved 2-D and 3-D limit equilibrium methods vol.269, pp.None, 2015, https://doi.org/10.1016/j.enggeo.2020.105550
  9. Experimental Study on the Effect of Compaction Work and Defect on the Strength of Soil-Rock Mixture Subgrade vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/5533590
  10. Research on the effect of rock content and sample size on the strength behavior of soil-rock mixture vol.80, pp.3, 2015, https://doi.org/10.1007/s10064-020-02050-z
  11. Establishing an opening size criterion in direct shear test using DEM Simulation vol.26, pp.2, 2015, https://doi.org/10.12989/gae.2021.26.2.147
  12. Investigation of geomechanical characterization and size effect of soil-rock mixture: a case study vol.80, pp.8, 2021, https://doi.org/10.1007/s10064-021-02289-0
  13. Liquid-Bridge Contact Model of Unsaturated Granular Materials and its Application in Discrete-Element Method vol.21, pp.9, 2021, https://doi.org/10.1061/(asce)gm.1943-5622.0002122