References
- Bass, J.D. (1995), "Elasticity of minerals, glasses and melts", In: Mineral Physics and Crystallography: a Handbook of Physical Constants, (T.J. Ahrens Ed.), American Geophysical Union, Washington D.C., USA.
- Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock: parts 1 to 3", Int. J. Rock. Mech. Min. Sci. Geomech. Abstr., 4, 395-430. https://doi.org/10.1016/0148-9062(67)90030-7
- Budiansky, B. and O'Connell, R.J. (1976), "Elastic moduli of a cracked solid", Int. J. Solids Struct., 12(2), 81-97. https://doi.org/10.1016/0020-7683(76)90044-5
- Clayton, J.D. (2010), "Deformation, fracture, and fragmentation in brittle geologic solids", Int. J. Fract., 163(1), 151-172. https://doi.org/10.1007/s10704-009-9409-5
- Douglass, P.M. and Voight, B. (1969), "Anisotropy of granite: A reflection of microscopic fabric", Geotechnique, 19(3), 376-398. https://doi.org/10.1680/geot.1969.19.3.376
- Golshani, A. (2003), "A micromechanical model for brittle failure of rock under compression", Ph.D. Dissertation, Saitama University, Saitama, Japan.
- Golshani, A., Okui, Y., Oda, M. and Takemura, T. (2006), "A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite", Mech. Mater., 38(4), 287-303. https://doi.org/10.1016/j.mechmat.2005.07.003
- Golshani, A., Oda, M., Okui, Y., Takemura, T. and Munkhtogoo, E. (2007), "Numerical simulation of the excavation damaged zone around an opening in brittle rock", Int. J. Rock Mech. Min. Sci., 44(6), 835-845. https://doi.org/10.1016/j.ijrmms.2006.12.005
- Golshani, A. and Tran-Cong, T. (2009), "Energy analysis of hydraulic fracturing", KSCE J. Civil Eng., 13(4), 219-224. https://doi.org/10.1007/s12205-009-0219-0
- Hazzard, J.F., Young, R.P. and Maxwell, S.C. (2000), "Micromechanical modeling of cracking and failure in brittle rocks", J. Geophys. Res., 105(B7), 16683-16697. https://doi.org/10.1029/2000JB900085
- He, M.C., Miao, J.L. and Feng, J.L. (2010), "Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions", Int. J. Rock Mech. Min. Sci., 47(2), 286-298. https://doi.org/10.1016/j.ijrmms.2009.09.003
- Kachanov, M. (1980), "Continuum model of medium with cracks", Proc. of ASCE, Eng. Mech. Div., 106(EM5), 1039.
- Kanatani, K. (1985), "Measurement of particle orientation distribution by a stereological method", Part. Charact., 2, 31-37. https://doi.org/10.1002/ppsc.19850020106
- Kawamoto, T., Ichikawa, Y. and Kyoya, T. (1988), "Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory", Int. J. Numer. Anal. Method. Geomech., 12(1), 1-30. https://doi.org/10.1002/nag.1610120102
- Krech, W.W., Henderson, F.A. and Hjelmstad, K.E. (1974), A standard rock suite for rapid excavation research; US Bur Min Rep Invest, 7865.
- Kulatilake, P.H.S.W., Park, J. and Um, J.G. (2004), "Estimation of rock mass strength and deformability in 3-D for a 30 m cube at a depth of 485 m at A spo Hard Rock Laboratory", Geotech. Geol. Eng., 22(3), 313-330. https://doi.org/10.1023/B:GEGE.0000025033.21994.c0
- Love, A.E.H. (1944), A Treatise on the Mathematical Theory of Elasticity, (7th Edition), Dover Publications, New York, NY, USA.
- Min, K.B. and Jing, L. (2004), "Stress dependent mechanical properties and bounds of Poisson's ratio for fractured rock masses investigated by a DFN-DEM technique", In: Proceedings of Sinorock 2004 Symposium, Int. J. Rock Mech. Min. Sci., (J.A. Hudson and X.T. Feng Ed.), 41(3), Paper 2A 13.
- Nemat-Nasser, S. and Horri, H. (1983), "Rock failure in compression", Proceedings of the 9th Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, December.
- Oda, M. (1982), "Fabric tensor for discontinuous geological materials", Soil Found., 22(4), 96-108. https://doi.org/10.3208/sandf1972.22.4_96
- Oda, M. (1983), "A new method for evaluating the effect of crack geometry on the mechanical behavior of cracked rock masses", Mech. Mater., 2(2), 163-171. https://doi.org/10.1016/0167-6636(83)90035-2
- Oda, M., Suzuki, K. and Maeshibu, T. (1984), "Elastic compliance for rock-like materials", Soils Found., 24(3), 27-40. https://doi.org/10.3208/sandf1972.24.3_27
- Oda, M., Yamabe, T. and Kamemura, K. (1986), "A crack tensor and its relation to wave velocity anisotropy in jointed rock masses", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 23(6), 387-397. https://doi.org/10.1016/0148-9062(86)92304-1
- Oda, M., Katsube, T. and Takemura, T. (2002), "Microcrack evolution and brittle failure of Inada granite in triaxial compression tests at 140 MPa", J. Geophys. Res., 107(B10), 2233.
- Paulding, B.W. Jr. (1965), "Crack growth during brittle fracture in compression", Ph.D. Dissertation; Massachusetts Institute of Technology, Cambridge, MA, USA.
- Robinson, P.C. (1984), "Connectivity, flow and transport in network models of fractured media", Ph.D. Dissertation; Oxford University, Oxford, UK.
- Suzuki, K., Oda, M., Yamazaki, M. and Kuwahara, T. (1998), "Permeability changes in granite with crack growth during immersion in hot water", Int. J. Rock Mech. Min. Sci., 35(7), 907-921. https://doi.org/10.1016/S0148-9062(98)00016-3
- Takemura, T. and Oda, M. (2004), "Stereology-based fabric analysis of microcracks in damaged granite", Tectonophysics, 387(1-4), 131-150. https://doi.org/10.1016/j.tecto.2004.06.004
- Takemura, T., Golshani, A., Oda, M. and Suzuki, K. (2003), "Preferred orientations of open microcracks in granite and their relation with anisotropic elasticity", Int. J. Rock Mech. Min. Sci., 40(4), 443-454. https://doi.org/10.1016/S1365-1609(03)00014-5
- Walsh, J.B. (1965), "The effect of cracks on the uniaxial elastic compression of rock", J. Geophys. Res., 70(2), 399-411. https://doi.org/10.1029/JZ070i002p00399
- Wittke, W. (1990), Rock Mechanics-Theory and Applications with Case Histories, (R. Sykes Trans.), Springer, Berlin, Germany.
- Zhang, K., Zhou, H. and Shao, J. (2012), "An experimental investigation and an elastoplastic constitutive model for a porous rock", Rock Mech. Rock Eng., 46(6), 1499-1511. https://doi.org/10.1007/s00603-012-0364-5
- Zhou, X.P., Zhang, Y.X., Ha, Q.L. and Zhu, K.S. (2008), "Micromechanical modelling of the complete stress-strain relationship for crack weakened rock subjected to compressive loading", Rock Mech. Rock Eng., 41(5), 747-769. https://doi.org/10.1007/s00603-007-0130-2
- Zhou, J.W., Xu, W.Y. and Yang, X.G. (2010), "A microcrack damage model for brittle rocks under uniaxial compression", Mech. Res. Commun., 37(4), 399-405. https://doi.org/10.1016/j.mechrescom.2010.05.001
Cited by
- Study of the Crack Propagation Model Under Seepage–Stress Coupling Based on XFEM vol.35, pp.5, 2017, https://doi.org/10.1007/s10706-017-0257-1
- Experimental and numerical study of shear crack propagation in concrete specimens vol.20, pp.1, 2015, https://doi.org/10.12989/cac.2017.20.1.057
- A review paper about experimental investigations on failure behaviour of non-persistent joint vol.13, pp.4, 2017, https://doi.org/10.12989/gae.2017.13.4.535
- Study on the splitting failure of the surrounding rock of underground caverns vol.14, pp.5, 2018, https://doi.org/10.12989/gae.2018.14.5.499
- Mechanical behavior of rock-coal-rock specimens with different coal thicknesses vol.15, pp.4, 2015, https://doi.org/10.12989/gae.2018.15.4.1017
- Direct shear testing of brittle material samples with non-persistent cracks vol.15, pp.4, 2015, https://doi.org/10.12989/gae.2018.15.4.927
- Damage constitutive model of brittle rock considering the compaction of crack vol.15, pp.5, 2015, https://doi.org/10.12989/gae.2018.15.5.1081
- Experimental study of crack propagation of rock-like specimens containing conjugate fractures vol.17, pp.4, 2015, https://doi.org/10.12989/gae.2019.17.4.323
- Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling) vol.25, pp.4, 2020, https://doi.org/10.12989/sss.2020.25.4.433
- Material constituents and mechanical properties and macro-micro-failure modes of tight gas reservoirs vol.38, pp.6, 2015, https://doi.org/10.1177/0144598720913069
- Progressive failure and friction motion characteristics of contact surface of composite rock mass vol.303, pp.None, 2021, https://doi.org/10.1051/e3sconf/202130301037
- Numerical simulation study on the influence of crack characteristics on mechanical properties and impact failure of rock vol.14, pp.24, 2021, https://doi.org/10.1007/s12517-021-08973-5