DOI QR코드

DOI QR Code

Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity

  • Chemi, Awda (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Heireche, Houari (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Zidour, Mohamed (Laboratoire des Materiaux et Hydrologie, Universite de Sidi Bel Abbes) ;
  • Rakrak, Kaddour (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
  • Received : 2015.11.26
  • Accepted : 2015.12.28
  • Published : 2015.12.25

Abstract

The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes (DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has been implemented. According to the governing equations of non-local theory, the analytical solution is derived and the solution for non-local critical buckling loads is obtained. The numerical results show the influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio of length to diameter.

Keywords

Acknowledgement

Supported by : Algerian national agency for development of university research (ANDRU), university of sidi bel abbes (UDL SBA) in Algeria

References

  1. Aissani, K., Bachir Bouiadjra, M., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., 55(4), 743-762. https://doi.org/10.12989/sem.2015.55.4.743
  2. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  3. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  4. Amara, K., Tounsi, A., Mechab, I. and Adda Bedia, E. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34, 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029
  5. Aydogdu, M. (2014), "On the vibration of aligned carbon nanotube reinforced composite beams", Adv. Nano Res., 2(4), 199-210. https://doi.org/10.12989/anr.2014.2.4.199
  6. Baghdadi, H., Tounsi, A., Zidour, M. and Benzair, A. (2015), "Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory", Full. Nanotub. Carb. Nanostr., 23, 266-272. https://doi.org/10.1080/1536383X.2013.787605
  7. Bao, W.X., Zhu, Ch.Ch. and Cui, W.Zh. (2004), "Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics", Physica B, 352, 156-163. https://doi.org/10.1016/j.physb.2004.07.005
  8. Batra, R.C. and Sears, A. (2007), "Continuum models of multi-walled carbon nanotubes", Int. J. Solid. Stuct., 44, 7577. https://doi.org/10.1016/j.ijsolstr.2007.04.029
  9. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  10. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  11. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  12. Benzair, A., Tounsi, A., Besseghier, A., Heireche, H., Moulay, N., and Boumia, L. (2008), "The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Phys. D., 41, 225404. https://doi.org/10.1088/0022-3727/41/22/225404
  13. Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and Adda Bedia El A. (2015), "Postbuckling analysis of nanobeams using trigonometric Shear deformation theory", Appl. Sci. Report., 10(2), 112-121.
  14. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  15. Boumia, L., Zidour, M., Benzair, A. and Tounsi, A. (2014), "Timoshenko beam model for vibration analysis of chiral single-walled carbon nanotubes", Physica E, 59, 186-191. https://doi.org/10.1016/j.physe.2014.01.020
  16. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  17. Brenner, D.W. (1990), Phys. Rev. B, 42, 9458. https://doi.org/10.1103/PhysRevB.42.9458
  18. Cornwell, C.F. and Wille, L.T. (1997), "Elastic properties of single-walled carbon nanotubes in compression", Solid. State. Commun., 101, 555. https://doi.org/10.1016/S0038-1098(96)00742-9
  19. Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T. and Smalley R.E. (1996), "Nanotubes as nanoprobes in scanning probe microscopy", Nature, 384, 147-50. https://doi.org/10.1038/384147a0
  20. Dresselhaus, M.S. and Avouris, P. (2001), "Carbon nanotubes: synthesis, structure, properties and application", Top. Appl. Phys., 80, 1-11. https://doi.org/10.1007/3-540-39947-X_1
  21. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
  22. Girifalco, L.A. and Lad, R.A., Chem, (1956), "Energy of cohesion, compressibility, and the potential energy functions of the graphite system", J. Phys., 25, 693.
  23. Girifalco, L.A. (1991), "Interaction potential for carbon (C60) molecules", J. Phys., 95, 5370.
  24. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  25. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  26. Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and Adda Bedia, E.A. (2008) "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E, 40, 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021
  27. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-8. https://doi.org/10.1038/354056a0
  28. Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1 nm diameter", Nature, 363, 603. https://doi.org/10.1038/363603a0
  29. Jin, Y. and Yuan, F. G. (2003), "Simulation of elastic properties of single-walled carbon nanotubes", Compos. Sci. Technol, 63, 1507. https://doi.org/10.1016/S0266-3538(03)00074-5
  30. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  31. Liu, J.Z., Zheng, Q. S. and Jiang, Q. (2001), "Effect of a rippling mode on resonances of carbon nanotubes", Phys. Rev. Lett, 86, 4843. https://doi.org/10.1103/PhysRevLett.86.4843
  32. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  33. Mohammadimehr, M., Saidi, A. R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2011), "Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory", Proc. IMech E Vol. 225 Part C: J. Mechanical Engineering Science.
  34. Murmu, T. and Adhikari, S. (2010), "Thermal effects on the stability of embedded carbon nanotubes", Physica E, 43, 415-422. https://doi.org/10.1016/j.physe.2010.08.023
  35. Naceri, M., Zidour, M., Semmah, A., Houari, S.A., Benzair, A. and Tounsi, A. (2011), "Sound wave propagation in armchair single walled carbon nanotubes under thermal environment", J. Appl. Phys., 110, 124322. https://doi.org/10.1063/1.3671636
  36. Odegard, G.M., Gates, Nicholson, T.S.L.M., and Wise, K.E. (2002), "Equivalent-continuum modeling of nano-structured materials", Compos. Sci. Technol, 62, 1869-1880. https://doi.org/10.1016/S0266-3538(02)00113-6
  37. Reulet, B. et al. (2000), "Acoustoelectric effects in carbon nanotubes", Phys. Rev. Lett., 85, 2829. https://doi.org/10.1103/PhysRevLett.85.2829
  38. Sears, C. and Batra, A.R.C. (2006), "Buckling of carbon nanotubes under axial compression", Phys. Rev. B., 73, 085410. https://doi.org/10.1103/PhysRevB.73.085410
  39. Semmah, A., Tounsi, A., Zidour, M., Heireche H. and Naceri M. (2014), "Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory", Full. Nanotub. Carb. Nanostr., 23, 518-522.
  40. Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281. https://doi.org/10.1063/1.1625437
  41. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  42. Tokio, Y. (1995), "Recent development of carbon nanotube", Synth. Met., 70, 1511-8. https://doi.org/10.1016/0379-6779(94)02939-V
  43. Tombler, T.W., Zhou, C.W., Alexseyev, L. et al. (2000), "Reversible nanotube electro-mechanical characteristics under local probe manipulation", Nature, 405, 769. https://doi.org/10.1038/35015519
  44. Tounsi, A, Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  45. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  46. Tu, Z.C. and Ou-Yang, Z.C. (2002), "Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young's modulus dependent on layer number", Phys. Rev. B, 65, 233407. https://doi.org/10.1103/PhysRevB.65.233407
  47. Yakobson, B.I., Brabec, C.J. and J. Bernholc, (1996), "Nanomechanics of carbon tubes: instabilities beyond linear response", Phys. Rev. Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511
  48. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  49. Zhang, H.W., Wang, L. and Wang, J. B. (2007), "Computer simulation of buckling behaviour of doublewalled carbon nanotubes with abnormal interlayer distances", Comput. Mater. Sci., 39, 664. https://doi.org/10.1016/j.commatsci.2006.08.016
  50. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  51. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Adda Bedia, El A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0
  52. Zidour, M., Hadji, L., Bouazza, M., Tounsi, A. and Adda Bedia, El A. (2015), "The mechanical properties of Zigzag carbon nanotube using the energy-equivalent model", J. Chem. Mater. Res., 3, 9-14.

Cited by

  1. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  2. Small-scale effects on hygro-thermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams vol.24, pp.11, 2017, https://doi.org/10.1080/15376494.2016.1196795
  3. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  4. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  5. Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
  6. Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory vol.23, pp.7, 2017, https://doi.org/10.1007/s00542-016-2933-0
  7. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  8. Nonlocal vibration analysis of FG nano beams with different boundary conditions vol.4, pp.2, 2016, https://doi.org/10.12989/anr.2016.4.2.085
  9. A new refined nonlocal beam theory accounting for effect of thickness stretching in nanoscale beams vol.4, pp.4, 2016, https://doi.org/10.12989/anr.2016.4.4.251
  10. Vibration Analysis of Nano Beam Using Differential Transform Method Including Thermal Effect vol.54, pp.1661-9897, 2018, https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  11. A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams vol.19, pp.2, 2017, https://doi.org/10.12989/sss.2017.19.2.115
  12. Effect of high energy ball milling on the structure of iron - multiwall carbon nanotubes (MWCNT) composite vol.6, pp.3, 2017, https://doi.org/10.12989/amr.2017.6.3.245
  13. A new nonlocal HSDT for analysis of stability of single layer graphene sheet vol.6, pp.2, 2015, https://doi.org/10.12989/anr.2018.6.2.147
  14. The critical buckling load of reinforced nanocomposite porous plates vol.67, pp.2, 2015, https://doi.org/10.12989/sem.2018.67.2.115
  15. Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2015, https://doi.org/10.12989/sem.2018.67.5.517
  16. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT vol.7, pp.3, 2015, https://doi.org/10.12989/anr.2019.7.3.191
  17. Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
  18. Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT vol.7, pp.6, 2015, https://doi.org/10.12989/anr.2019.7.6.405
  19. Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle vol.8, pp.1, 2020, https://doi.org/10.12989/anr.2020.8.1.037
  20. Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle vol.8, pp.2, 2015, https://doi.org/10.12989/anr.2020.8.2.135
  21. Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis vol.25, pp.2, 2015, https://doi.org/10.12989/cac.2020.25.2.133
  22. Critical Buckling Load of Triple-Walled Carbon Nanotube Based on Nonlocal Elasticity Theory vol.62, pp.None, 2020, https://doi.org/10.4028/www.scientific.net/jnanor.62.108
  23. Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.147
  24. Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2015, https://doi.org/10.12989/anr.2020.8.3.191
  25. Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects vol.8, pp.3, 2020, https://doi.org/10.12989/anr.2020.8.3.245
  26. Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT vol.25, pp.4, 2015, https://doi.org/10.12989/cac.2020.25.4.343
  27. Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM vol.8, pp.4, 2015, https://doi.org/10.12989/anr.2020.8.4.283
  28. Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation vol.26, pp.1, 2020, https://doi.org/10.12989/sss.2020.26.1.077
  29. Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory vol.9, pp.2, 2015, https://doi.org/10.12989/anr.2020.9.2.069
  30. MHD Mixed Convection Nanofluid Flow over Convectively Heated Nonlinear due to an Extending Surface with Soret Effect vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/5592024