DOI QR코드

DOI QR Code

On the bending and stability of nanowire using various HSDTs

  • Youcef, Djamel Ould (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Kaci, Abdelhakim (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Houari, Mohammed Sid Ahmed (Laboratoire des Structures et Materiaux Avances dans le Genie Civil et Travaux Publics, Universite de Sidi Bel Abbes, Faculte de Technologie, Departement de Genie Civil) ;
  • Tounsi, Abdelouahed (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Benzair, Abdelnour (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes) ;
  • Heireche, Houari (Laboratoire de Modelisation et Simulation Multi-echelle, Departement de Physique, Faculte des Sciences Exactes, Departement de Physique, Universite de Sidi Bel Abbes)
  • 투고 : 2015.12.07
  • 심사 : 2015.12.28
  • 발행 : 2015.12.25

초록

In this article, various higher-order shear deformation theories (HSDTs) are developed for bending and buckling behaviors of nanowires including surface stress effects. The most important assumption used in different proposed beam theories is that the deflection consists of bending and shear components and thus the theories have the potential to be utilized for modeling of the surface stress influences on nanowires problems. Numerical results are illustrated to prove the difference between the response of the nanowires predicted by the classical and non-classical solutions which depends on the magnitudes of the surface elastic constants.

키워드

과제정보

연구 과제 주관 기관 : Algerian National Thematic Agency of Research in Science and Technology (ATRST), university of Sidi Bel Abbes (UDL SBA) in Algeria

참고문헌

  1. Ait Amar Meziane, M., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  2. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  3. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  4. Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49, 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007
  5. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  6. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  7. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  8. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  9. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013) "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  10. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  11. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A., (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  12. Chiu, M.S. and Chen, T. (2011a), "Higher-order surface stress effects on buckling of nanowires under uniaxial compression", Procedia Eng., 10, 397-402. https://doi.org/10.1016/j.proeng.2011.04.067
  13. Chiu, M.S. and Chen, T.Y. (2011b), "Effects of high-order surface stress on static bending behavior of nanowires", Physica E, 44(3), 714-718. https://doi.org/10.1016/j.physe.2011.11.016
  14. Craighead, H.G. (2000), "Nanoelectromechanical systems", Sci., 290, 1532-1535. https://doi.org/10.1126/science.290.5496.1532
  15. Dingreville, R., Qu, J. and Cherkaoui, M. (2005), "Surface free energy and its effects on the elastic behavior of nanosized particles, wires and films", J. Mech. Phys. Solid., 53(8), 1827-1954. https://doi.org/10.1016/j.jmps.2005.02.012
  16. Draiche, K., Tounsi, A. and Khalfi, Y. (2014), "A trigonometric four variable plate theory for free vibration of rectangular composite plates with patch mass", Steel Compos. Struct., 17(1), 69-81. https://doi.org/10.12989/scs.2014.17.1.069
  17. Duan, H.L., Wang, J., Huang, Z.P. and Karihaloo, B.L. (2005), "Size dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress", J. Mech. Phys. Solid., 53, 1574-1596. https://doi.org/10.1016/j.jmps.2005.02.009
  18. Ekinci, K.L. and Roukes, M.L. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76, 061101. https://doi.org/10.1063/1.1927327
  19. Eltaher, M., Khater, M., Abdel-Rahman, E. and Yavuz, M. (2014), "A model for nano bonding wires under thermal loading", IEEE-Nano 2014, Toronto, Canada.
  20. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Ration. Mech. Anal., 57, 291-323. https://doi.org/10.1007/BF00261375
  21. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid. Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  22. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  23. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., ASCE, 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  24. Hosseini-Hashemi, Sh., Fakher, M. and Nazemnezhad, R. (2013), "Surface effects on free vibration analysis of nanobeams using nonlocal elasticity: a comparison between Euler-Bernoulli and Timoshenko", J. Solid Mech., 5(3), 290-304.
  25. He, J. and Lilley, C.M. (2008a), "Surface effect on the elastic behavior of static bending nanowires", Nano Lett., 8, 1798-1802. https://doi.org/10.1021/nl0733233
  26. He, J. and Lilley, C.M. (2008b), "Surface effect on the elastic behavior of static bending nanowires", Appl. Phys. Lett., 93, 263108. https://doi.org/10.1063/1.3050108
  27. He, L.H. and Lim, C.W. (2001), "On the bending of unconstrained thin crystalline plates caused by the change in surface stress", Surf. Sci., 478(3), 203-210. https://doi.org/10.1016/S0039-6028(01)00953-0
  28. Gurtin, M.E., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78, 1093-1109. https://doi.org/10.1080/01418619808239977
  29. Jiang, L.Y. and Yan, Z. (2010), "Timoshenko beam model for static bending of nanowires with surface effects", Physica E, 42, 2274-2279. https://doi.org/10.1016/j.physe.2010.05.007
  30. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  31. Li, B., Li, C.X. and Wei, C.L. (2011), "Surface effects on the postbuckling of nanowires", Chin. Phys. Lett., 28(4), 046202. https://doi.org/10.1088/0256-307X/28/4/046202
  32. Liu, J.L., Mei, Y., Xia, R. and Zhu, W.L. (2012), "Large displacement of a static bending nanowire with surface effects", Physica E, 44, 2050-2055. https://doi.org/10.1016/j.physe.2012.06.009
  33. Lu, P., He, L.H., Lee, H.P. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid. Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
  34. Mahmoud F., Eltaher M., Alshorbagy A. and Meletis E. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Tech., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z
  35. Park, H.S. and Klein, P.A. (2008), "Surface stress effects on the resonant properties of metal nanowires: The importance of finite deformation kinematics and the impact of the residual surface stress", J. Mech. Phys. Solid., 56, 3144-3166. https://doi.org/10.1016/j.jmps.2008.08.003
  36. Park, H.S. (2008), "Surface stress effects on the resonant properties of silicon nanowires", J. Appl. Phys., 103, 123504. https://doi.org/10.1063/1.2939576
  37. Park, H.S. (2009), "Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered", Nanotechnol., 20, 115701. https://doi.org/10.1088/0957-4484/20/11/115701
  38. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  39. Reddy, J.N. (2002), Energy principles and variational methods in applied mechanics, John Wiley & Sons Inc.
  40. Sharma, P., Ganti, S. and Bhate, N. (2003), "Effect of surfaces on the size dependent elastic state of nano-inhomogeneities", Appl. Phys. Lett., 82, 535-537. https://doi.org/10.1063/1.1539929
  41. Soldatos, K. (1992), "A transverse shear deformation theory for homogeneous mono- clinic plates", Acta Mech., 94(3), 195-220. https://doi.org/10.1007/BF01176650
  42. Song, F. and Huang, G.L. (2009), "Modeling of surface stress effects on bending behavior of nanowires: Incremental deformation theory", Phys. Lett. A, 373, 3969-3973. https://doi.org/10.1016/j.physleta.2009.08.065
  43. Tounsi, A., Benguediab, S., Adda Bedia, E.A., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., 1(1), 1-11. https://doi.org/10.12989/anr.2013.1.1.001
  44. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  45. Wang, G.F. and Feng, X.Q. (2009), "Surface effects on buckling of nanowires under uniaxial compression", Appl. Phys. Lett., 94, 141913. https://doi.org/10.1063/1.3117505
  46. Wang, G.F. and Yang, F. (2011), "Postbuckling analysis of nanowires with surface effects", J. Appl. Phys., 109, 063535. https://doi.org/10.1063/1.3562138
  47. Yan, Z. and Jiang, L.Y. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnol., 22, 245703-245709. https://doi.org/10.1088/0957-4484/22/24/245703

피인용 문헌

  1. Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory vol.4, pp.1, 2016, https://doi.org/10.12989/anr.2016.4.1.031
  2. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  3. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  4. On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
  5. Elastic buckling of current-carrying double-nanowire systems immersed in a magnetic field vol.227, pp.12, 2016, https://doi.org/10.1007/s00707-016-1679-1
  6. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  7. Surface and shear energy effects on vibrations of magnetically affected beam-like nanostructures carrying direct currents vol.113, 2016, https://doi.org/10.1016/j.ijmecsci.2016.05.002
  8. Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities vol.6, pp.1, 2017, https://doi.org/10.12989/amr.2017.6.1.045
  9. Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
  10. Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle vol.8, pp.2, 2015, https://doi.org/10.12989/anr.2020.8.2.135
  11. Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2015, https://doi.org/10.12989/anr.2020.8.3.191
  12. Post-buckling analysis of aorta artery under axial compression loads vol.8, pp.3, 2020, https://doi.org/10.12989/anr.2020.8.3.255
  13. Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM vol.8, pp.4, 2015, https://doi.org/10.12989/anr.2020.8.4.283