DOI QR코드

DOI QR Code

Reduction of Spectral Distortion in PAN-sharpening Using Spectral Adjustment and Anisotropic Diffusion

분광 조정과 비등방성 확산에 의한 PAN-Sharpened 영상의 분광 왜곡 완화

  • Received : 2015.12.05
  • Accepted : 2015.12.22
  • Published : 2015.12.31

Abstract

This paper proposes a scheme to reduce spectral distortion in PAN-sharpening which produces a MultiSpectral image (MS) with the higher resolution of PANchromatic image (PAN). The spectral distortion results from reconstructing spatial details of PAN image in the MS image. The proposed method employs Spectral Adjustment and Anisotropic Diffusion to make a reduction of the distortion. The spectral adjustment makes the PAN-sharpened image agree with the original MS image, but causes block distortion because the spectral response of a pixel in the lower resolution is assumed to be equal to the average response of the pixels belonging to the corresponding area in the higher resolution at a same wavelength. The block distortion is corrected by the anisotropic diffusion which uses a conduct coefficient estimating from a local computation of PAN image. It results in yielding a PAN-sharpened image with the spatial structure of PAN image. GSA is one of PAN-sharpening techniques which are efficient in computation as well as good in quantitative quality evaluation. This study suggests the GSA as a preliminary PAN-sharpening method. Two data sets were used in the experiment to evaluate the proposed scheme. One is a Dubaisat-2 image of $1024{\times}1024$ observed at Los Angeles area, USA on February, 2014, the other is an IKONOS of $2048{\times}2048$ observed at Anyang, Korea on March, 2002. The experimental results show that the proposed scheme yields the PAN-sharpened images which have much less spectral distortion and better quantitative quality evaluation.

본 연구는 주어진 관측 multi-spectral (MS)영상을 panchromatic (PAN) 영상 수준으로 고해상도화 하는 영상융합에서 공간 해상력을 향상시키는 과정에 발생하는 분광 왜곡을 완화시키는 방법을 제안한다. 제안 방법은 관측 MS 영상에 대해 GSA PAN-sharpening을 수행하고 분광 조정 후 비등방성 확산을 실시한다. 분광 조정은 PAN-sharpened 영상이 관측 MS 영상과 일치하는 분광적 특성을 가지도록 하나 구역 오류를 발생시킨다. 분광 조정을 실시 한 후 나타나는 구역 오류는 비등방성 확산에 의해 제거된다. 비등방성 확산은 PAN 영상을 기반으로 하여 국지적으로 계산한 전도 계수를 사용하므로 PAN-sharpened 영상이 PAN의 공간적 특성에 일치하는 결과를 산출한다. 분광 조정 전 초기 PAN-sharpening 방법으로 정량적 평가가 우수하고 계산적으로 효율적인 GSA를 제안한다. 본 연구는 2014년 2월 관측된 $1024{\times}1024$ 크기의 미국 Los Angeles 지역의 Dubaisat-2 위성 자료와 $2048{\times}2048$ 크기의 2002년 3월 경기도 안양 지역에서 관측된 IKONOS 자료를 사용하여 실험 평가를 수행하였다. 제안 방법의 결과는 정량적 품질 평가에서 최선이었거나 최선에 가까운 수준의 결과를 산출 했고 특히 분광 오류를 현저히 감소시킨다.

Keywords

References

  1. Aiazzi, B., L. Alparone, S. Baronti, and A. Garzelli, 2002. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis, IEEE Transactions on Geoscience and Remote Sensing, 40(10): 2300-2312. https://doi.org/10.1109/TGRS.2002.803623
  2. Aiazzi, B., L. Alparone, S. Baronti, A. Garzelli, and M. Selva, 2006. MTFtailored multiscale fusion of high-resolution MS and Pan imagery, Photogrammetric Engineering of Remote Sensing, 72(5): 591-596. https://doi.org/10.14358/PERS.72.5.591
  3. Aiazzi, B., S. Baronti, and M. Selva, 2007. Improving component substitution pansharpening through multivariate regression of MS+Pan data, IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3230-3239. https://doi.org/10.1109/TGRS.2007.901007
  4. Alparone, L., L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L.M. Bruce, 2007. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest, IEEE Transactions on Geoscience and Remote Sensing, 45(10): 3012-3021. https://doi.org/10.1109/TGRS.2007.904923
  5. Alparone L., B. Aiazzi, S. Baronti, A. Garzelli, F. Nencini, and M. Selva, 2008. Multispectral and panchromatic data fusion assessment without reference, Photogrammetric Engineering Remote Sensing, 74(2): 193-200. https://doi.org/10.14358/PERS.74.2.193
  6. Burt, P.J. and E.H. Adelson, 1983. The Laplacian pyramid as a compact image code, IEEE Transactions on Communications, COM-31(4): 532-540. https://doi.org/10.1109/TCOM.1983.1095851
  7. Carper, W., T. Lillesand, and R. Kiefer, 1990. The use of intensity-hue-saturation transformations for merging Spot panchromatic and multispectral image data, Photogrammetric Engineering Remote Sensing, 56(4): 459-467.
  8. Chavez, Jr., P.S. and A.W. Kwarteng, 1989. Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis, Photogrammetric Engineering Remote Sensing, 55(3): 339-348.
  9. Chavez, P.S., S.C. Sildes, and J.A. Anderson, 1991. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic, Photogrammetric Engineering Remote Sensing, 57(3): 295-303.
  10. Choi, J., K. Yu, and Y. Kim, 2011. A new adaptive component-substitution based satellite image fusion by using partial replacement, IEEE Transactions on Geoscience and Remote Sensing, 49(1): 295-309. https://doi.org/10.1109/TGRS.2010.2051674
  11. Garzelli, A., F. Nencini, and L. Capobianco, 2008. Optimal MMSE pan sharpening of very high resolution multispectral images, IEEE Transactions on Geoscience and Remote Sensing, 46(1): 228-236. https://doi.org/10.1109/TGRS.2007.907604
  12. Laben, C.A. and B.V. Brower, 2000. Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening, U.S. Patent 6 011 875.
  13. Mallat, S., 1989. A theory for multiresolution signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysus and Machine Intelligence, 11(7): 674-693. https://doi.org/10.1109/34.192463
  14. Nason, G.P. and B.W. Silverman, 1995. The stationary wavelet transform and some statistical applications, in Wavelets and Statistics, Springer-Verlag, New York, NY, USA 103: 281-299.
  15. Oh, K.Y., H.S. Jung, and N.K. Jeong, 2014. Pansharpening Method for KOMPSAT-2/3 High-Spatial Resolution Satellite Image. Korean Journal of Remote Sensing, 31(2): 161-170. (In Korean with English Abstract) https://doi.org/10.7780/kjrs.2015.31.2.10
  16. Perona, P. and J. Malik, 1990. Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7): 629-639. https://doi.org/10.1109/34.56205
  17. Shah, V.P., N.H. Younan, and R.L. King, 2008. An efficient pan-sharpening method via a combined adaptive-PCA approach and contourlets, IEEE Transactions on Geoscience and Remote Sensing, 46(5): 1323-1335. https://doi.org/10.1109/TGRS.2008.916211
  18. Shensa, M.J., 1992. The discrete wavelet transform: Wedding the-trous and Mallat algorithm, IEEE Transactions on Signal Processing, 40(10): 2464-2482. https://doi.org/10.1109/78.157290
  19. Shettigara, V.K., 1992. A generalized component substitution technique for spatial enhancement of multispectral images using a higher resolution data set, Photogrammetric Engineering Remote Sensing, 58(5): 561-567.
  20. Vivone, G., R. Restaino, M. Dalla Mura, G. Licciardi, and J. Chanussot, 2014. Contrast and error-based fusion schemes for multispectral image pansharpening, IEEE Transactions on Geoscience and Remote Sensing Letters, 11(5): 930-934. https://doi.org/10.1109/LGRS.2013.2281996
  21. Vivone, G., L. Alparone, J. Chanussot, M. Dalla Mura., A. Garzelli, .G.A. Licciardi, R. Restaino, and L. Wald, 2015. A Critical Comparison Among Pansharpening Algorithms, IEEE Transactions on Geoscience and Remote Sensing, 53(5): 2565-2585. https://doi.org/10.1109/TGRS.2014.2361734
  22. Wald, L., T. Ranchin, and M. Mangolini, 1997. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images, Photogrammetric Engineering of Remote Sensing, 63(6): 691-699.

Cited by

  1. Comparison Analysis of Quality Assessment Protocols for Image Fusion of KOMPSAT-2/3/3A vol.32, pp.5, 2016, https://doi.org/10.7780/kjrs.2016.32.5.5