DOI QR코드

DOI QR Code

Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis

가우시안 군집분석을 이용한 천리안 위성의 대기운동벡터 표적추적 알고리듬 개발 및 분석

  • Oh, Yurim (Department of Atmospheric sciences, Division of Earth Environmental System, Pusan National University) ;
  • Kim, Jae Hwan (Department of Atmospheric sciences, Division of Earth Environmental System, Pusan National University) ;
  • Park, Hyungmin (Department of Atmospheric sciences, Division of Earth Environmental System, Pusan National University) ;
  • Baek, Kanghyun (Department of Atmospheric sciences, Division of Earth Environmental System, Pusan National University)
  • Received : 2015.11.04
  • Accepted : 2015.12.03
  • Published : 2015.12.31

Abstract

Atmospheric Motion Vector (AMV) from satellite images have shown Slow Speed Bias (SSB) in comparison with rawinsonde. The causes of SSB are originated from tracking, selection, and height assignment error, which is known to be the leading error. However, recent works have shown that height assignment error cannot be fully explained the cause of SSB. This paper attempts a new approach to examine the possibility of SSB reduction of COMS AMV by using a new target tracking algorithm. Tracking error can be caused by averaging of various wind patterns within a target and changing of cloud shape in searching process over time. To overcome this problem, Gaussian Mixture Model (GMM) has been adopted to extract the coldest cluster as target since the shape of such target is less subject to transformation. Then, an image filtering scheme is applied to weigh more on the selected coldest pixels than the other, which makes it easy to track the target. When AMV derived from our algorithm with sum of squared distance method and current COMS are compared with rawindsonde, our products show noticeable improvement over COMS products in mean wind speed by an increase of $2.7ms^{-1}$ and SSB reduction by 29%. However, the statistics regarding the bias show negative impact for mid/low level with our algorithm, and the number of vectors are reduced by 40% relative to COMS. Therefore, further study is required to improve accuracy for mid/low level winds and increase the number of AMV vectors.

위성영상을 이용하여 산출된 대기운동벡터(AMV)와 라디오존데 바람 관측 자료를 이용한 검증결과는 산출된 AMV가 지속적으로 관측 자료에 비해서 풍속이 약하게 나타나는 Slow Speed Bias(SSB)를 보여 주었다. 이러한 SSB는 표적추적, 표적선정, 그리고 고도할당 단계의 오차에 의해 야기될 수 있으며, 이 중 고도할당 단계의 오차는 SSB를 발생시키는 주된 요인으로 여겨진다. 그러나 최근 연구에서는 고도할당 단계의 개선만으로는 SSB 문제를 해결하는데 한계가 있음을 밝혔다. 그러므로 본 연구에서는 새로운 표적추적 알고리듬을 개발하여 SSB를 감소시킴으로서 기상청 현업 AMV 알고리듬의 성능을 개선하고자 하였다. 표적추적 단계의 오차는 표적 내에 다양한 시 공간 규모의 바람이 포함되어 벡터가 과도하게 평균된 움직임으로 계산되거나, 구름이 추적 시간동안 형태를 유지하지 못하고 변형되는 경우에 발생한다. 이러한 문제를 해결하기 위해 개발된 표적추적 알고리듬에서는 가우시안 군집분석(GMM)을 이용하여 변형이 적고 추적에 용이한 저온 군집을 표적으로 재선정하고, 이미지를 변형시켜 군집의 움직임을 보다 쉽게 추적할 수 있게 하였다. 또한 표적을 추적하기 위한 방법으로 거리제곱합 방법을 사용하였다. 개발된 알고리듬과 기존 COMS 알고리듬을 천리안 위성의 적외채널 영상에 적용하여 AMV를 산출하였으며, 이를 라디오존데 관측 자료와 비교 검증해 보았다. 제안된 알고리듬으로 산출된 AMV는 기존 알고리듬으로 산출된 AMV보다 평균 풍속이 $2.7ms^{-1}$증가함에 따라 SSB가 평균 29%까지 감소하는 개선된 결과를 보여주었다. 그러나 개발된 알고리듬으로 산출된 AMV는 중 하층의 정확도가 감소하였고, 기존 알고리듬에 비해 산출되는 AMV 벡터수가 약 40%까지 감소함을 보였다. 이에 따라 중 하층의 정확도 개선과 기존의 알고리듬과 비교하여 산출되는 벡터 개수가 감소하는 문제를 보완하기 위한 연구가 필요할 것으로 판단된다.

Keywords

References

  1. Bedka, K.M. and J.R. Mecikalski, 2005. Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. Journal of Applied Meteorology, 44(11): 1761-1772. https://doi.org/10.1175/JAM2264.1
  2. Bedka, K.M., C.S. Velden, R.A. Petersen, W.F. Feltz, and J.R. Mecikalski, 2009. Comparisons of satellite-derived atmospheric motion vectors, rawinsondes, and NOAA Wind Profiler observations. Journal of Applied Meteorology and Climatology, 48(8): 1542-1561. https://doi.org/10.1175/2009JAMC1867.1
  3. Bigdeli, E., M. Mohammadi, B. Raahemi, and S. Matwin, 2015. Incremental Cluster Updating Using Gaussian Mixture Model. In Advances in Artificial Intelligence, Springer International Publishing, pp. 264-272.
  4. Blyth, A.M., 1993. Entrainment in cumulus clouds. Journal of applied meteorology, 32(4): 626-641. https://doi.org/10.1175/1520-0450(1993)032<0626:EICC>2.0.CO;2
  5. Borde, R. and R. Oyama, 2008. A direct link between feature tracking and height assignment of operational atmospheric motion vectors. Proc. of 2008 International Wind Workshop, Maryland, USA, Apr. pp. 14-18
  6. Borde, R., M. Doutriaux-Boucher, G. Dew, and M. Carranza, 2014. A direct link between feature tracking and height assignment of operational EUMETSAT atmospheric motion vectors Journal of Atmospheric and Oceanic Technology, 31(1): 33-46. https://doi.org/10.1175/JTECH-D-13-00126.1
  7. Bresky, W.C., J.M. Daniels, A.A. Bailey, and S.T. Wanzong, 2012. New methods toward minimizing the slow speed bias associated with atmospheric motion vectors. Journal of Applied Meteorology and Climatology, 51(12): 2137-2151. https://doi.org/10.1175/JAMC-D-11-0234.1
  8. Choi, Y.S. and C.H. Ho, 2015. Earth and environmental remote sensing community in South Korea: A review. Remote Sensing Applications: Society and Environment.
  9. Da, Cheng, 2015. Preliminary assessment of the Advanced Himawari Imager (AHI) measurement onboard Himawari-8 geostationary satellite. Remote Sensing Letters, 6(8): 637-646. https://doi.org/10.1080/2150704X.2015.1066522
  10. De Rooy, W.C., P. Bechtold, K. Frohlich, C. Hohenegger, H. Jonker, D. Mironov, and J.I. Yano, 2013. Entrainment and detrainment in cumulus convection: an overview. Quarterly Journal of the Royal Meteorological Society, 139(670): 1-19. https://doi.org/10.1002/qj.1959
  11. Deb, S.K., S. Wanzong, C.S. Velden, I. Kaur, C.M. Kishtawal, P.K. Pal, and W.P. Menzel, 2014. Height assignment improvement in Kalpana-1 atmospheric motion vectors. Journal of the Indian Society of Remote Sensing, 42(4): 679-687. https://doi.org/10.1007/s12524-013-0278-z
  12. Dew, G. and K. Holmlund, 2000. Investigations of cross-correlation and euclidian distance target matching techniques in the mpef environment. Proc. of 2000 International Wind Workshop, Lorne, Australia, Feb. 28-Mar. 3.
  13. Fritz, S. and J.S. Winston, 1962. Synoptic use of radiation measurements from satellite TIROS II 1. Monthly Weather Review, 90(1): 1-9. https://doi.org/10.1175/1520-0493(1962)090<0001:SUORMF>2.0.CO;2
  14. Genkova, I., R. Borde, J. Schmetz, J. Daniels, C. Velden, and K. Holmlund, 2008. Global atmospheric motion vector inter-comparison study. Proc. of 2008 International Wind Workshop, Maryland, USA, Apr. 14-18.
  15. Han, H.Y., 2014. Introduction to Pattern Recognition. Revision. HanbitMedia.
  16. Holmlund, K., 1998. The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators. Weather and Forecasting, 13(4): 1093-1104. https://doi.org/10.1175/1520-0434(1998)013<1093:TUOSPO>2.0.CO;2
  17. Kim, D.H., C.R. Kim, K.T. Sohn, K.M. Jeong, Y.S. Chung, Y. Cho, Y.S. Choi, and H.K. Hong, 2008. Statistics, Third Edition. Freeacademy.
  18. Kim, D.H. and M.H. Ahn, 2014. Introduction of the inorbit test and its performance for the first meteorological imager of the Communication, Ocean, and Meteorological Satellite. Atmospheric Measurement Techniques, 7(8): 2471-2485. https://doi.org/10.5194/amt-7-2471-2014
  19. Kim, S., J.H. Park, M.L. Ou, H. Cho, and E.H. Sohn, 2012. Optimization of Mesoscale Atmospheric Motion Vector Algorithm Using Geostationary Meteorological Satellite Data. Atmosphere, 22(1): 1-12. https://doi.org/10.14191/Atmos.2012.22.1.001
  20. Kim, T.M., E.H. Lee, S.R. Chung, and J.G. Won, 2014. Study of the target selection methods for amv derivation of GEO-KOMPSAT-2A. Proc. of 2014 International Winds Working Group, Copenhagen, Denmark, Jun. 16-20.
  21. Le Marshall, J., J. Jung, T. Zapotocny, C. Redder, M. Dunn, J. Daniels, and L.P. Riishojgaard, 2008. Impact of MODIS atmospheric motion vectors on a global NWP system. Australian Meteorological Magazine, 57(1): 45.
  22. Masahiro, H., 2012. Recent status and development of atmospheric motion vectors at JMA. Proc. of 2012 International Wind Workshop, Auckland, New Zealand, Feb. 20-24.
  23. Menzel, W.P., 2001. Cloud tracking with satellite imagery: From the pioneering work of Ted Fujita to the present. Bulletin of the American Meteorological Society, 82(1): 33-47. https://doi.org/10.1175/1520-0477(2001)082<0033:CTWSIF>2.3.CO;2
  24. National Institute of Meteorological Research, 2009. Development of Meteorological Data Processing System for Communication, Ocean and Meteorological Satellite.
  25. Park, J.H., M.L. Ou, S. Kim, and H. Cho, 2012. Sensitivity of satellite-derived wind retrieval over cloudy scenes to target selection in tracking and pixel selection in height assignment. Geoscience and Remote Sensing, IEEE Transactions on, 50(5): 2063-2073. https://doi.org/10.1109/TGRS.2011.2167754
  26. Schmetz, J., K. Holmlund, J. Hoffman, B. Strauss, B. Mason, V. Gaertner, and L. Van De Berg, 1993. Operational cloud-motion winds from Meteosat infrared images. Journal of applied meteorology, 32(7): 1206-1225. https://doi.org/10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2
  27. Sohn, E.H., M.J. Jang, and M.H. Ahn, 2006. Current status of AMV system at KMA, Proc. of 2006 International Winds Working Group, Beijing, China, Apr. 23-28.
  28. Sohn, E.H., S.R. Chung, and J.S. Park, 2012. Current status of COMS AMV in NMSC/KMA, Proc. of 2012 International Winds Working Group, Auckland, New Zealand, Feb. pp. 16-20.
  29. Velden, C.S. and K.M. Bedka, 2009. Identifying the uncertainty in determining satellite-derived atmospheric motion vector height attribution. Journal of Applied Meteorology and Climatology, 48(3): 450-463. https://doi.org/10.1175/2008JAMC1957.1
  30. Zhang, Z., C. Chen, J. Sun, and K.L. Chan, 2003. EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern recognition, 36(9): 1973-1983. https://doi.org/10.1016/S0031-3203(03)00059-1
  31. Zhang, L., X. Sun, and H. Zhuge, 2015. Topic discovery of clusters from documents with geographical location. Concurrency and Computation: Practice and Experience.

Cited by

  1. Development and Intercomparison Study of an Atmospheric Motion Vector Retrieval Algorithm for GEO-KOMPSAT-2A vol.11, pp.17, 2019, https://doi.org/10.3390/rs11172054