References
- Abdelbasit, K. M. and Butler, N. A. (2006). Minimum bias design for generalized linear models, The Indian Journal of Statistics, 68, 587-599.
- Box, G. E. P. and Draper, N. R. (1959). A bias for the selection of a response surface design, Journal of the Statistical Association, 54, 622-654. https://doi.org/10.1080/01621459.1959.10501525
- Draper, N. R. and Guttman, I. (1992). Treating bias as variance for experimental design purposes, Annals of the Institute of Statistical Mathematics, 44, 659-671. https://doi.org/10.1007/BF00053396
- Hunga, K. and Fan, S. (2004). A note on minimum bias estimation in response surfaces, Statistics and Probability Letters, 70, 71-85. https://doi.org/10.1016/j.spl.2004.08.009
- Jones, B. and Nachtsheim, C. J. (2011a). A class of three-level designs for definitive screening in the presence of second-order effects, Journal of Quality Technology, 43, 1-15. https://doi.org/10.1080/00224065.2011.11917841
- Jones, B. and Nachtsheim, C. J. (2011b). Efficient designs with minimal aliasing, Technometrics, 53, 62-71. https://doi.org/10.1198/TECH.2010.09113
- Karson, M. J. (1970). Design criterion for minimum bias estimation of response surfaces, Journal of the Statistical Association, 65, 1565-1572. https://doi.org/10.1080/01621459.1970.10481185
-
Kim, Y. (1995). A Study for additional characteristics of
$I_{\lambda}$ -optimal experimental designs, Communications for Statistical Applications and Methods, 2, 55-63. - Montepiedra, G. and Fedorov, V. V. (1997). Minimum bias design with constraints, Journal of Statistical Planning and Inference, 63, 97-111. https://doi.org/10.1016/S0378-3758(96)00199-1
- Myer, R. K. and Nachtsheim, C. J. (1995). The coordinate exchange algorithm for constructing exact experimental designs, Technometrics, 37, 60-69. https://doi.org/10.1080/00401706.1995.10485889