참고문헌
- Billard, L. and Diday, E. (2006). Symbolic Data Analysis: Conceptual Statistics and Data Mining, John Wiley and Sons, New Jersey.
- Billard, L. and Kim, J. (2013). Clustering in contemporary mixed-valued data, In Proceedings of the 2013 World Statistics Congress, International Statistical Institute.
- Bock, H. H. and Diday, E. (2000). Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, Springer-Verlag, New York.
- Cha, S. H. and Srihari, S. H. (2002). On measuring the distance between histograms, Pattern Recognition Letter, 35, 1355-1370. https://doi.org/10.1016/S0031-3203(01)00118-2
- Chavent, M. (1998). A monothetic clustering method, Pattern Recognition Letters, 19, 989-996. https://doi.org/10.1016/S0167-8655(98)00087-7
- Chavent, M. (2000). Criterion-based divisive clustering for symbolic data. In: Bock, H.H., Diday, E. (Eds.), Analysis of Symbolic Data, Exploratory Methods for Extracting Statistical Information from Complex Data, Springer, New York, 299-311.
- Davis, D. L. and Bouldin, D. W. (1979). A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 224-227.
- De Carvalho, F. A. T. (1994). Proximity coefficients between boolean symbolic objects. In: Diday, E., Lechevallier, Y., Schader, M., Bertrand, P., (Eds.), New Approaches in Classification and Data Analysis, Springer-Verlag, Berlin, 387-394.
- De Carvalho, F. A. T. (1998). Extension based proximity coefficients between constrained boolean symbolic objects. In: Hayashi, C., Ohsumi, N., Yajima, K., Tanaka, Y., Bock, H.-H., Baba, Y., (Eds.), In Proceedings of the Fifth Conference of the International Federation of Classification Societies (IFCS-96), Springer-Verlag, Berlin, 370-378.
-
De Carvalho, F. A. T., Brito, P. and Bock, H. H. (2006). Dynamic clustering for interval data based on
$L_2$ distance, Computational Statistics, 2, 231-245. - De Carvalho, F. A. T. and Lechevallier, Y. (2009). Partitional clustering algorithms for symbolic interval data based on single adaptive distances, Pattern Recognition, 42, 1223-1236. https://doi.org/10.1016/j.patcog.2008.11.016
- De Carvalho, F. A. T. and De Souza, R. M. C. R. (2010). Unsupervised pattern recognition models for mixed feature-type symbolic data. Pattern Recognition Letters, 31, 430-443. https://doi.org/10.1016/j.patrec.2009.11.007
- De Souza, R. M. C. R. and De Carvalho, F. A. T. (2007). A clustering methods for mixed feature-type symbolic data using adaptive squared Euclidean distances, The 7th International Conference on Hybrid Intelligent Systems, 168-173.
- Diday, E. (1987). Introduction a l'approche symbolique en analyse des donnees, Premiere Journees Symbolique-Numerique, CEREMADE, Universite Paris IX, 21-56.
- Dunn, J. C. (1974). Well separated clusters and optimal fuzzy partitions, Journal of Cybernetica, 4, 95-104. https://doi.org/10.1080/01969727408546059
- Gowda, K. C. and Diday, E. (1991). Symbolic clustering using a new dissimilarity measure, Pattern Recog-nition, 24, 567-578. https://doi.org/10.1016/0031-3203(91)90022-W
- Gowda, K. C. and Ravi, T. V. (1995a). Agglomerative clustering of symbolic objects using the concepts of both similarity and dissimilarity, Pattern Recognition Letters, 16, 647-652. https://doi.org/10.1016/0167-8655(95)80010-Q
- Gowda, K. C. and Ravi, T. V. (1995b). Divisive clustering of symbolic objects using the concepts of both similarity and dissimilarity, Pattern Recognition, 28, 1277-1282. https://doi.org/10.1016/0031-3203(95)00003-I
- Ichino, M. and Yaguchi, H. (1994). Generalized minkowski metrics for mixed feature type data analysis, IEEE Transactions on Systems, Man, and Cybernetics, 24, 698-709. https://doi.org/10.1109/21.286391
- Irpino, A. and Verde, R. (2006). A newWasserstein based distance for the hierarchical clustering of histogram symbolic data, IFCS 2006, 185-192.
- Kim, J. and Billard, L. (2011). A polythetic clustering process and cluster validity indexes for histogramvalued objects, Computational Statistics & Data Analysis, 55, 2250-2262. https://doi.org/10.1016/j.csda.2011.01.011
- Kim, J. and Billard, L. (2012). Dissimilarity measures and divisive clustering for symbolic multimodal-valued data, Computational Statistics & Data Analysis, 56, 2795-2808. https://doi.org/10.1016/j.csda.2012.03.001
- Kim, J. and Billard, L. (2013). Dissimilarity measures for histogram-valued observations, Communications in Statistics - Theory and Methods, 42, 283-303. https://doi.org/10.1080/03610926.2011.581785