DOI QR코드

DOI QR Code

A Target Selection Model for the Counseling Services in Long-Term Care Insurance

노인장기요양보험 이용지원 상담 대상자 선정모형 개발

  • Han, Eun-Jeong (Health Insurance Policy Research Institute, National Health Insurance Service) ;
  • Kim, Dong-Geon (Department of Statistics and Information Science, Dongduk Women's University)
  • 한은정 (국민건강보험공단 건강보험정책연구원) ;
  • 김동건 (동덕여자대학교 정보통계학과)
  • Received : 2015.07.13
  • Accepted : 2015.10.15
  • Published : 2015.12.31

Abstract

In the long-term care insurance (LTCI) system, National Health Insurance Service (NHIS) provide counseling services for beneficiaries and their family caregivers, which help them use LTC services appropriately. The purpose of this study was to develop a Target Selection Model for the Counseling Services based on needs of beneficiaries and their family caregivers. To develope models, we used data set of total 2,000 beneficiaries and family caregivers who have used the long-term care services in their home in March 2013 and completed questionnaires. The Target Selection Model was established through various data-mining models such as logistic regression, gradient boosting, Lasso, decision-tree model, Ensemble, and Neural network. Lasso model was selected as the final model because of the stability, high performance and availability. Our results might improve the satisfaction and the efficiency for the NHIS counseling services.

우리나라 노인장기요양보험에서는 수급자와 그 가족부양자가 수급자의 심신기능 상태와 욕구에 따라 불이익이나 불편함이 없이 비용-효과적으로 장기요양 급여를 이용할 수 있도록 지원하고자 이용지원 상담을 제공하고 있다. 본 연구는 재가급여 이용자의 이용지원 정기상담 대상자 선정시 상담 대상자의 욕구를 반영하지 않아 이용지원 상담의 만족도와 효율성이 낮은 문제를 통계학적 모형을 활용하여 해결하고자 수행되었다. 모형 개발을 위해 2013년 3월 장기요양 재가급여를 이용한 수급자와 가족부양자를 대상으로 이용지원 상담에 대한 욕구와 관련 변수를 조사하였으며, 2,000명이 조사를 완료하였다. 조사 자료를 바탕으로 이용지원 상담 대상자 선정모형을 다양한 데이터마이닝 기법(로지스틱 회귀모형, 의사결정 나무모형, Lasso 모형, 자동 신경망모형, 그래디언트 부스팅, 앙상블 모형)을 통해 개발하였고, 이중 가장 안정적이고 현장 적용이 쉽고 성능이 좋은 Lasso 모형 결과를 최종모형으로 선정하였다. 본 연구가 이용지원 상담의 만족도를 높이고 업무를 효율화 하는데 기여할 것으로 기대된다.

Keywords

References

  1. Han, E. J., Kwon, J. H., Lee, J. M., Lee, J. S., Choi, J. K., Park, J. D. (2013). Improvement of LTC Service Counseling System for the Community-Dwelling Elderly, National Health Insurance Service, Seoul.
  2. Han, E. J., Lee, J. M., Jo, J. W. and Kim, D. H. (2012). Improvement of LTC Service Management System, National Health Insurance Service, Seoul.
  3. Han, E. J., Lee, J. S., Kim, D. G. and Kwon, J. H. (2014). A decision-support system for care plan in Long-term care insurance, The Korean Journal of Applied Statistics, 27, 667-679. https://doi.org/10.5351/KJAS.2014.27.5.667
  4. Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction, Second Ed, Springer Verlag, New York.
  5. Hyun, K. R. and Lee, S. M. (2012). Effects on the functional status changes of LTC(Long-Term-Care) services, Journal of the Korean Gerontological Society, 32, 593-609.
  6. Jegal, H. S. (2011). Improvement of Long-term care insurance service quality: development of integrated community system for the elderly health and welfare and introduce necessary of care management, Public policy institute for people, Seoul.
  7. Kang, H. C., Han, S. T., Choi, J. H., Lee, S. G. and Kim, E. S. (2014). Data Mining Methodology for Big Data Analysis, Freedom Academy, Seoul.
  8. Kwon, J. D. (1994). A study on the assessment of caregiver burden in caring for the demented elderly in Korea, Doctoral thesis of Yonsei university, Seoul.
  9. Lee, Y. K., Jung, K. H., Kim, J. S., Kim, C. W., Park, G. W., Jung, M. Y., Kim, S. J. and Nam, H. J. (2013). Reform LTC Level-Decision system and development of dementia management model, National Health Insurance Service Korea Institute for Health and Social Affairs, Seoul.
  10. National Health Insurance Service (2014a). Act on Long-Term Care Insurance for Senior Citizens, National Health Insurance Service, Seoul.
  11. National Health Insurance Service (2014b). A Source Book for the Work Processing of Long-Term Care Insurance, National Health Insurance Service, Seoul.
  12. OECD (2011). Help Wanted?, Providing and paying for long-term care.
  13. SAS Institute Inc (2014). SAS Enterprise Miner 13.1 Reference Help. Cary, NC.
  14. Sunwoo, D., Lee, T. H., Seo, D. M., Chung, S. D. and Kim, S. J. (2014). Improvement for Advanced Long-Term Care Insurance System, National Health Insurance Service, Seoul.
  15. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society, Series B, 58, 267-288.