DOI QR코드

DOI QR Code

Predicting the Changes in Cultivation Areas of Walnut Trees (Juglans sinensis) in Korea Due to Climate Change Impacts

기후변화 영향에 따른 호두나무 재배지역 변화 예측

  • Lee, Sang-Hyuk (Department of Environment & Forest Resources, Chungnam National University) ;
  • Lee, Peter Sang-Hoon (Institute of Agricultural Science, Chungnam National University) ;
  • Lee, Sol Ae (Department of Environment & Forest Resources, Chungnam National University) ;
  • Ji, Seung-Yong (Department of Environment & Forest Resources, Chungnam National University) ;
  • Choi, Jaeyong (Department of Environment & Forest Resources, Chungnam National University)
  • 이상혁 (충남대학교 산림환경자원학과) ;
  • 이상훈 (충남대학교 농업과학연구소) ;
  • 이솔애 (충남대학교 산림환경자원학과) ;
  • 지승용 (충남대학교 산림환경자원학과) ;
  • 최재용 (충남대학교 산림환경자원학과)
  • Received : 2015.10.28
  • Accepted : 2015.12.21
  • Published : 2015.12.30

Abstract

The objective of our study was to predict future cultivation areas for walnut trees (Juglans sinensis), using the cultivation suitability map provided from Korea Forest Service and MaxEnt modelling under future climate conditions. The climate conditions in 2050s and 2070s were computed using the Regional Climate Prediction (RCP) 4.5 and 8.5 scenarios with the HadGEM2-AO model. As a result, compared to the present area, the cultivation area of the western Korea including Chungcheongnamdo, Jeollabuk-do, Jeollanam-do decreased on a national scale under RCP 4.5, and those of Gyeongsangbukdo and part of Gyeongsangnam-do decreased under RCP 8.5. However, Gangwon-do which is located in higher altitude over 600 meters than other regions showed increases in cultivation areas of 18.3% under RCP 4.5 and of 56.6% under RCP 8.5 by 2070s. The predicted map showed large regional variations in the cultivation areas with climate change. From the analysis of current top ranking areas, the cultivation areas in Gimcheon-si and Yeongdong-gun dramatically decreased by 2070s under RCP 4.5 and 8.5; that of Gongju-si decreased more under RCP 4.5; and those of Muju-gun and Cheonan-si sustained the areas by 2070s under both scenarios. The results from this study can be helpful for providing a guide for minimizing the loss of walnut production and proactively improving productivity and quality of walnuts with regard to unavoidable climate change in South Korea.

본 연구에서는 호두나무에 대하여 단기임산물 재배적 지도를 바탕으로 기후변화를 고려한 전국의 재배가능지역을 MaxEnt 모델을 이용하여 추출하였다. RCP 4.5 및 8.5 시나리오와 HadGEM2-AO모델을 이용하여 2050년대와 2070년대의 기후변화에 따른 재배지역 변화를 예측하였다. 분석결과, 미래의 재배적지면적을 현재 수치와 비교하였을 때, RCP 4.5에서는 충청남도, 전라북도, 전라남도에 이르는 우리나라 서쪽 지역이 주로 감소할 것으로 나타났으며, RCP 8.5에서는 경상북도, 경상남도 일부 지역을 중심으로 감소할 것으로 나타났다. 하지만, 평균고도가 600m 이상으로 높은 지역인 강원도는 2070년대 RCP 4.5에서 18.3%, RCP 8.5에서 56.6%가 증가할 것으로 나타나 기후변화의 영향 정도에 따라 전국적으로 재배가능지역의 차이가 있는 것으로 나타났다. 현재 호두 생산량이 가장 많은 지역을 분석한 결과 공주시, 김천시, 영동군은 2070년대에는 RCP 8.5에서 재배지역의 감소가 클 것으로 예상되었으며, 공주시는 RCP 4.5에서 감소폭이 더 큰 것으로 나타났다. 무주군과 천안시는 현재의 재배가능지역이 모든 시나리오에서 유지될 것으로 나타났다. 본 연구의 결과는 미래 기후변화에 따른 영향이 불가피한 상황에서 예상되는 피해를 최소화하고 경쟁력 있는 임산물 생산을 위한 기후변화 영향평가 자료로 활용될 것으로 판단된다.

Keywords

References

  1. Choi, J., P. S. Lee, and S. H. Lee, 2015: Anticipation of the future suitable cultivation areas for Korean pines in Korean peninsula with climate change. Journal of Korean Society of Environmental Restoration Technology 18(1), 103-113. (In Korean with English abstract) https://doi.org/10.13087/kosert.2015.18.1.103
  2. Dormann, C. F., 2007: Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography 16(2), 129-138. https://doi.org/10.1111/j.1466-8238.2006.00279.x
  3. Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carre, J. R. Garcia Marquez, B. Gruber, B. Lafoourcade, P. J. Leitao, T. Munkemuller, C. Mcclean, P. E. Osborne, B. Reineking, B. Schroder, A. K. Skidmore, D. Zurell, and S. Lautenbach, 2013: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1), 27-46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
  4. Franklin, J., 2009: Mapping species distributions: spatial inference and prediction. Cambridge University Press.
  5. Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis, 2005: Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965-1978. https://doi.org/10.1002/joc.1276
  6. KFRI (Korea Forest Research Institute)., 2009: History and the application of the suitable trees on a site. Research Report, 2009. Korea Forest Research Institute, Korea Forest Service.
  7. KFRI (Korea Forest Research Institute)., 2011: Cultivation of Walnut tree. Korea Forest Research Institute, Korea Forest Service.
  8. KFS (Korea Forest Service)., 2012: Forest products standard cultivate guide for Good Agricultural Practice, Korea Forest Service.
  9. KFS (Korea Forest Service)., 2013: Statistics in Forest Products. (in Korean)
  10. KFS (Korea Forest Service)., 2014: Statistical yearbook of forestry. no.44. (in Korean)
  11. Kim, S., U. Chung, S. H. Kim, I. M. Choi, and J. I. Yun, 2009: The suitable region and site for 'Fuji' apple under the projected climate in South Korea. Korean Journal of Agricultural and Forest Meteorology 11(4), 162-173 (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.4.162
  12. Kim, S. Y., I. H. Heo, and S. H. Lee, 2010: Impacts of temperature rising on changing of cultivation area of apple in Korea. Journal of the Korean Association of regional geographers 16(3), 201-215. (in Korean with English abstract)
  13. Kim, Y. K., W. K. Lee, Y. H. Kim, S. Oh, and J. H. Heo, 2012: Changes in potential distribution of Pinus rigida caused by climate changes in Korea. Journal of Korean Forest Society, 101(3): 509-516. (In Korean with English abstract)
  14. Kim, S. B., Y. W. Ko, D. K. Oh and H. K. Noh, 2013: A study on regional specialization of fruit trees to strengthen competitiveness. Journal of Korean Forest Society 102(2), 292-299. (in Korean with English abstract)
  15. Kim, J. W., H. Jung, S. W. Jeon, and D. K. Lee, 2015: Predicting the potential distribution of Korean pine (Pinus koraiensis) using an ensemble of climate scenarios. Journal of Korean Society of Environmental Restoration Technology 18(2), 79-88. (in Korean with English abstract)
  16. KMA (Korea Meteorological Administration)., 2011: How to Utilize the Regional Climate Change Information, 27pp.
  17. Ko, Y. W., 2013: A study of regional specialization for activation of non-timber forest products. M.A. dissertation, Chungnam National University. (in Korean with English abstract)
  18. Lee, U. K., M. S. Jung, M. H. Lee, K. N. Kang, J. O. Hyun, and Y. H. Kwon, 2008: A consideration on the pollen morphology of walnut trees (Juglans spp.) by using Scanning Electron Microscope(SEM). Journal of Apiculture 23(2), 139-145. (in Korean with English abstract)
  19. Lee, S. H., H. Jung, and J. Choi, 2012: Projecting climate change impact on the potential distribution of endemic Plants (Megaleranthis saniculifolia) in Korea. Journal of Korean Society of Environmental Restoration Technology 15(3), 75-84. (In Korean with English abstract) https://doi.org/10.13087/kosert.2012.15.3.075
  20. Liu, C., P. M. Berry, T. P. Dawson, and R. G. Pearson, 2005: Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385-393. https://doi.org/10.1111/j.0906-7590.2005.03957.x
  21. NIMR (National Institute of Meteorological Research)., 2011: Report on the Climate Change Scenario in Response to IPCC 5th Assessment Report, National Institute of Meteorological Research. (in Korean)
  22. Phillips, S. J., R. P. Anderson, and R. E. Schapire, 2006: Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259 https://doi.org/10.1016/j.ecolmodel.2005.03.026
  23. Phillips, S. J., and M. Dudik, 2008: Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography 31, 161-175 https://doi.org/10.1111/j.0906-7590.2008.5203.x
  24. Seo, C. W, T. Y Choi, Y. S. Choi, and D. Y. Kim, 2008: A study on wildlife habitat suitability modeling for goral (Nemorhaedus caudatus raddeanus) in Seoraksan National Park. Journal of the Korea Society for Environmental Restoration and Revegetation Technology 11(3), 28-38. (in Korean with English abstract)
  25. Shim, K. M., J. T. Lee, Y. S. Lee, and G. Y. Kim, 2004: Reclassification of winter barley cultivation zones in Korea based on recent evidences in climate change. Korean Journal of Agricultural and Forest Meteorology 6(4), 218-234. (in Korean with English abstract)
  26. Song, W. K., and E. Y. Kim, 2012: A comparison of machine learning species distribution methods for habitat analysis of the Korea water deer (Hydropotes inermis argyropus). Korean Journal of Remote Sensing 28(1), 171-180. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2012.28.1.171
  27. Song, W. K., 2015: Habitat analysis of Hyla suweonensis in the breeding season using species distribution modeling. Journal of Korean Society of Environmental Restoration Tehcnology 18(1), 71-82. (in Korean with English abstract) https://doi.org/10.13087/kosert.2015.18.1.71
  28. Syfert, M. M., M. J. Smith, and D. A. Coomes, 2013: The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8(7), e55158. doi:10.1371/journal.pone.0055158
  29. Thuiller, W., 2003: BIOMOD-optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9(10), 1353-1362. https://doi.org/10.1046/j.1365-2486.2003.00666.x
  30. Warren, D. L., and S. N. Seifert, 2011: Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria, Ecological Applications 21, 335-342. https://doi.org/10.1890/10-1171.1
  31. Watling, J. I., S. S. Romanach, D. N. Bucklin, C. Speroterra, L. A. Brandt, L. G. Pearlstine, and F. J. Mazzotti, 2012: Do bioclimate variables improve performance of climate envelope models?. Ecological Modelling, 246(10), 79-85. https://doi.org/10.1016/j.ecolmodel.2012.07.018
  32. Bean, W. T., R. Stafford, and J. S. Brashares, 2012: The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35, 250-258. https://doi.org/10.1111/j.1600-0587.2011.06545.x
  33. http://www.forest.go.kr (2015. 12. 01)
  34. http://www.kfri.go.kr (2015. 12. 01)