DOI QR코드

DOI QR Code

Free vibration of functionally graded thin elliptic plates with various edge supports

  • Pradhan, K.K. (Department of Mathematics, National Institute of Technology Rourkela) ;
  • Chakraverty, S. (Department of Mathematics, National Institute of Technology Rourkela)
  • 투고 : 2014.05.29
  • 심사 : 2014.11.06
  • 발행 : 2015.01.25

초록

In this article, free vibration of functionally graded (FG) elliptic plates subjected to various classical boundary conditions has been investigated. Literature review reveals no study has been performed based on functionally graded elliptic plates till date. The mechanical kinematic relations are considered based on classical plate theory. Rayleigh-Ritz technique is used to obtain the generalized eigenvalue problem. The material properties of the FG plate are assumed to vary along thickness direction of the constituents according to power-law form. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any edge support. The objective is to study the effect of geometric configurations and gradation of constituent volume fractions on the natural frequencies. New results for frequency parameters are incorporated after performing a test of convergence. A comparison study is carried out with existing literature for validation in special cases. Three-dimensional mode shapes for circular and elliptic FG plates are also presented with various boundary conditions at the edges.

키워드

참고문헌

  1. Allahverdizadeh, A., Naei, M.H. and Bahrami, M.N. (2008), "Nonlinear free and forced vibration analysis of thin circular functionally graded plates", J. Sound Vib., 310, 966-984. https://doi.org/10.1016/j.jsv.2007.08.011
  2. Bachir Bouiadjra, R., Adda Bedia, E.A. and Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., 48, 547-567. https://doi.org/10.12989/sem.2013.48.4.547
  3. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  4. Benachour, A., Daouadji Tahar, H., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos.: Part B, 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  5. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandwich Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  6. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  7. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  8. Chakraverty, S. (2009), Vibration of plates, CRC Press, Taylor and Francis Group, FL.
  9. Chakraverty, S. and Petyt, M. (1997), "Natural frequencies for free vibration of nonhomogeneous elliptic and circular plates using two dimensional orthogonal polynomials", Appl. Math. Model., 21, 399-417. https://doi.org/10.1016/S0307-904X(97)00028-0
  10. Chakraverty, S., Jindal, R. and Agarwal, V.K. (2007), "Effect of non-homogeneity on natural frequencies of vibration of plates", Meccanica, 42, 585-599. https://doi.org/10.1007/s11012-007-9077-3
  11. Chen, L.W. and Hwang, J.R. (1988), "Axisymmetric dynamic stability of transversely isotropic Mindlin circular plates", J. Sound Vib., 121(2), 307-315. https://doi.org/10.1016/S0022-460X(88)80032-4
  12. Cheung, Y.K., Tham, L.G. and Li, W.Y. (1988), "Free vibration and static analysis of general plate by spline finite strip", Comput. Mech., 3, 187-197. https://doi.org/10.1007/BF00297445
  13. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
  14. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  15. Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 467-479.
  16. Hsieh, J.J. and Lee, L.T. (2006), "An inverse problem for a functionally graded elliptic plate with large deflection and slightly disturbed boundary", Int. J. Solid. Struct., 43, 5981-5993. https://doi.org/10.1016/j.ijsolstr.2005.07.029
  17. Fard, K.M. (2014), "Higher order free vibration of sandwich curved beams with a functionally graded core", Struct. Eng. Mech., 49(5), 537-554. https://doi.org/10.12989/sem.2014.49.5.537
  18. Leissa, A.W. (1967), "Vibration of a simply-supported elliptic plate", J. Sound Vib., 6(1), 145-148. https://doi.org/10.1016/0022-460X(67)90166-6
  19. Leissa, A.W. (1969), Vibration of plates, Scientific and Technical Information Divison, NASA, Washington, DC.
  20. Leissa, A.W. and Narita, Y. (1980), "Natural frequencies of simply supported circular plates", J. Sound Vib., 70(2), 221-229. https://doi.org/10.1016/0022-460X(80)90598-2
  21. Liew, K.M., Han, J.B. and Xiao, Z.M. (1997), "Vibration analysis of circular Mindlin plates using the differential quadrature method", J. Sound Vib., 205(5) 617-630. https://doi.org/10.1006/jsvi.1997.1035
  22. Liu, C.F. and Lee, Y.T. (2000), "Finite element analysis of three-dimensional vibrations of thick circular and annular plates", J. Sound Vib., 233(1), 63-80. https://doi.org/10.1006/jsvi.1999.2791
  23. Liu, Z., Yin, Y., Wang, F., Zhao, Y. and Cai, L. (2013), "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., 48(5), 697-709. https://doi.org/10.12989/sem.2013.48.5.697
  24. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
  25. Ma, L.S. and Wang, T.J. (2003), "Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings", Int. J. Solid. Struct., 40, 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5
  26. Mazumdar, J. (1971), "Transverse vibration of elastic plates by the method of constant deflection lines", J. Sound Vib., 18(2), 147-155. https://doi.org/10.1016/0022-460X(71)90341-5
  27. Najafizadeh, M.M. and Eslami, M.R. (2002), "Buckling analysis of circular plates of functionally graded materials under radial compression", Int. J. Mech. Sci., 44, 2479-2493. https://doi.org/10.1016/S0020-7403(02)00186-8
  28. Nie, G.J. and Zhong, Z. (2007), "Semi-analytical solution for three-dimensional vibration of functionally graded circular plates", Comput. Meth. Appl. Mech. Eng., 196, 4901-4910. https://doi.org/10.1016/j.cma.2007.06.028
  29. Prakash, T. and Ganpathi, M. (2006), "Axisymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method", Compos.: Part B, 37, 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005
  30. Rajalingham, C. and Bhat, R.B. (1993), "Axisymmetric vibration of circular plates and its analogous elliptic plates using characteristic orthogonal polynomials", J. Sound Vib., 161(1), 109-118. https://doi.org/10.1016/0022-460X(93)90342-9
  31. Rajalingham, C., Bhat, R.B. and Xistris, G.D. (1994), "Vibration of clamped elliptic plates using exact circular plate modes as shape functions in Rayleigh-Ritz method", Int. J. Mech. Sci., 36(3), 231-246. https://doi.org/10.1016/0020-7403(94)90072-8
  32. Rao, S.S. (2004), The Finite Element Method in Engineering, Elsevier Science and Technology Books, Miami.
  33. Reddy, J.N., Wang, C.M. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Euro. J. Mech. A/Solid., 18, 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4
  34. Saidi, A.R., Rasouli, A. and Sahraee, S. (2009), "Axisymmetric bending and buckling analysis of thick functionally graded circulat plates using unconstrained third-order shear deformation plate theory", Compos. Struct., 89, 110-119. https://doi.org/10.1016/j.compstruct.2008.07.003
  35. Singh, B. and Chakraverty, S. (1991), "Transverse vibration of completely-free elliptic and circular plates using orthogonal polynomials in the Rayleigh-Ritz Method", Int. J. Mech. Sci. 33(9), 741-751. https://doi.org/10.1016/0020-7403(91)90069-F
  36. Singh, B. and Chakraverty, S. (1992), "Transverse vibration of simply supported elliptic and circular plates using boundary characteristic orthogonal polynomials in two variables", J. Sound Vib., 152(1), 149-155. https://doi.org/10.1016/0022-460X(92)90071-5
  37. Singh, B. and Chakraverty, S. (1992), "On the use of orthogonal polynomials in Rayleigh-Ritz method for the study of transverse vibrtion of elliptic plates", Comzput. Struct., 43(3), 439-443. https://doi.org/10.1016/0045-7949(92)90277-7
  38. Singh, B. and Chakraverty, S. (1994), "Use of characteristic orthogonal polynomials in two dimensions for transverse vibration of elliptic and circular plates with variable thickness", J. Sound Vib., 173(3), 289-299. https://doi.org/10.1006/jsvi.1994.1231
  39. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aeros. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  40. Wu, T.Y. and Liu, G.R. (2001), "Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule", Int. J. Solid. Struct., 38, 7967-7980. https://doi.org/10.1016/S0020-7683(01)00077-4
  41. Wu, T.Y., Wang, Y.Y. and Liu, G.R. (2002), "Free vibration analysis of circular plates using generalized differential quadrature rule", Comput. Meth. Appl. Mech. Eng., 191, 5365-5380. https://doi.org/10.1016/S0045-7825(02)00463-2
  42. Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear deformable beams and plates: Relationship with Classical Solutions, Elsevier, The Boulevard, Langford Lane, UK.
  43. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014) "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aeros. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  44. Zhao, D., Au, F.T.K., Cheung, Y.K. and Lo, S.H. (2003), "Three-dimensional vibration analysis of circular and annular plates via the Chebyshev-Ritz method", Int. J. Solid. Struct., 40, 3089-3105. https://doi.org/10.1016/S0020-7683(03)00114-8
  45. Zhang, D.G. (2013), "Nonlinear bending analysis of FGM elliptical plates resting on two-paramter elastic foudations", Appl. Math. Model., 37, 8292-8309. https://doi.org/10.1016/j.apm.2013.03.044

피인용 문헌

  1. A curved hierarchical finite element method for the nonlinear vibration analysis of functionally graded sandwich elliptic plates 2018, https://doi.org/10.1080/15376494.2018.1430277
  2. Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations vol.10, pp.6, 2016, https://doi.org/10.12989/eas.2016.10.6.1429
  3. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
  4. An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
  5. Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
  6. Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
  7. The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review 2017, https://doi.org/10.1177/1077546317694724
  8. A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.547
  9. Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
  10. Shooting method for free vibration of FGM Reissner-Mindlin circular plates resting on elastic foundation in thermal environments vol.19, pp.6, 2017, https://doi.org/10.21595/jve.2017.17815
  11. Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations vol.56, pp.1, 2015, https://doi.org/10.12989/sem.2015.56.1.085
  12. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
  13. An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
  14. A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
  15. On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
  16. Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
  17. A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
  18. A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
  19. A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.009
  20. Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2015, https://doi.org/10.12989/sss.2017.19.3.289
  21. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.385
  22. A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2015, https://doi.org/10.12989/sem.2017.64.4.391
  23. A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.717
  24. Free vibration of FGM plates with porosity by a shear deformation theory with four variables vol.66, pp.3, 2015, https://doi.org/10.12989/sem.2018.66.3.353
  25. A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2015, https://doi.org/10.12989/scs.2018.27.5.599
  26. A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
  27. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate vol.18, pp.2, 2015, https://doi.org/10.12989/gae.2019.18.2.161
  28. On the High-Temperature Free Vibration Analysis of Elastically Supported Functionally Graded Material Plates Under Mechanical In-PlaneForce Via GDQR vol.141, pp.10, 2019, https://doi.org/10.1115/1.4043489
  29. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
  30. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
  31. Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2015, https://doi.org/10.12989/cac.2021.27.1.073
  32. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
  33. State of the art in functionally graded materials vol.262, pp.None, 2015, https://doi.org/10.1016/j.compstruct.2021.113596
  34. Buckling and free vibration characteristics of embedded inhomogeneous functionally graded elliptical plate in hygrothermal environment vol.235, pp.5, 2015, https://doi.org/10.1177/1464420720986899