References
- Allahverdizadeh, A., Naei, M.H. and Bahrami, M.N. (2008), "Nonlinear free and forced vibration analysis of thin circular functionally graded plates", J. Sound Vib., 310, 966-984. https://doi.org/10.1016/j.jsv.2007.08.011
- Bachir Bouiadjra, R., Adda Bedia, E.A. and Tounsi, A. (2013), "Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory", Struct. Eng. Mech., 48, 547-567. https://doi.org/10.12989/sem.2013.48.4.547
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Benachour, A., Daouadji Tahar, H., Ait Atmane, H., Tounsi, A. and Meftah, S.A. (2011), "A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient", Compos.: Part B, 42, 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
- Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandwich Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
- Berrabah, H.M., Tounsi, A., Semmah, A. and Adda Bedia, E.A. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Chakraverty, S. (2009), Vibration of plates, CRC Press, Taylor and Francis Group, FL.
- Chakraverty, S. and Petyt, M. (1997), "Natural frequencies for free vibration of nonhomogeneous elliptic and circular plates using two dimensional orthogonal polynomials", Appl. Math. Model., 21, 399-417. https://doi.org/10.1016/S0307-904X(97)00028-0
- Chakraverty, S., Jindal, R. and Agarwal, V.K. (2007), "Effect of non-homogeneity on natural frequencies of vibration of plates", Meccanica, 42, 585-599. https://doi.org/10.1007/s11012-007-9077-3
- Chen, L.W. and Hwang, J.R. (1988), "Axisymmetric dynamic stability of transversely isotropic Mindlin circular plates", J. Sound Vib., 121(2), 307-315. https://doi.org/10.1016/S0022-460X(88)80032-4
- Cheung, Y.K., Tham, L.G. and Li, W.Y. (1988), "Free vibration and static analysis of general plate by spline finite strip", Comput. Mech., 3, 187-197. https://doi.org/10.1007/BF00297445
- El Meiche, N., Tounsi, A., Ziane, N., Mechab, I. and Adda Bedia, E.A. (2011), "A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate", Int. J. Mech. Sci., 53, 237-247. https://doi.org/10.1016/j.ijmecsci.2011.01.004
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Houari, M.S.A., Tounsi, A. and Anwar Beg, O. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 467-479.
- Hsieh, J.J. and Lee, L.T. (2006), "An inverse problem for a functionally graded elliptic plate with large deflection and slightly disturbed boundary", Int. J. Solid. Struct., 43, 5981-5993. https://doi.org/10.1016/j.ijsolstr.2005.07.029
- Fard, K.M. (2014), "Higher order free vibration of sandwich curved beams with a functionally graded core", Struct. Eng. Mech., 49(5), 537-554. https://doi.org/10.12989/sem.2014.49.5.537
- Leissa, A.W. (1967), "Vibration of a simply-supported elliptic plate", J. Sound Vib., 6(1), 145-148. https://doi.org/10.1016/0022-460X(67)90166-6
- Leissa, A.W. (1969), Vibration of plates, Scientific and Technical Information Divison, NASA, Washington, DC.
- Leissa, A.W. and Narita, Y. (1980), "Natural frequencies of simply supported circular plates", J. Sound Vib., 70(2), 221-229. https://doi.org/10.1016/0022-460X(80)90598-2
- Liew, K.M., Han, J.B. and Xiao, Z.M. (1997), "Vibration analysis of circular Mindlin plates using the differential quadrature method", J. Sound Vib., 205(5) 617-630. https://doi.org/10.1006/jsvi.1997.1035
- Liu, C.F. and Lee, Y.T. (2000), "Finite element analysis of three-dimensional vibrations of thick circular and annular plates", J. Sound Vib., 233(1), 63-80. https://doi.org/10.1006/jsvi.1999.2791
- Liu, Z., Yin, Y., Wang, F., Zhao, Y. and Cai, L. (2013), "Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam", Struct. Eng. Mech., 48(5), 697-709. https://doi.org/10.12989/sem.2013.48.5.697
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X
- Ma, L.S. and Wang, T.J. (2003), "Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings", Int. J. Solid. Struct., 40, 3311-3330. https://doi.org/10.1016/S0020-7683(03)00118-5
- Mazumdar, J. (1971), "Transverse vibration of elastic plates by the method of constant deflection lines", J. Sound Vib., 18(2), 147-155. https://doi.org/10.1016/0022-460X(71)90341-5
- Najafizadeh, M.M. and Eslami, M.R. (2002), "Buckling analysis of circular plates of functionally graded materials under radial compression", Int. J. Mech. Sci., 44, 2479-2493. https://doi.org/10.1016/S0020-7403(02)00186-8
- Nie, G.J. and Zhong, Z. (2007), "Semi-analytical solution for three-dimensional vibration of functionally graded circular plates", Comput. Meth. Appl. Mech. Eng., 196, 4901-4910. https://doi.org/10.1016/j.cma.2007.06.028
- Prakash, T. and Ganpathi, M. (2006), "Axisymmetric flexural vibration and thermoelastic stability of FGM circular plates using finite element method", Compos.: Part B, 37, 642-649. https://doi.org/10.1016/j.compositesb.2006.03.005
- Rajalingham, C. and Bhat, R.B. (1993), "Axisymmetric vibration of circular plates and its analogous elliptic plates using characteristic orthogonal polynomials", J. Sound Vib., 161(1), 109-118. https://doi.org/10.1016/0022-460X(93)90342-9
- Rajalingham, C., Bhat, R.B. and Xistris, G.D. (1994), "Vibration of clamped elliptic plates using exact circular plate modes as shape functions in Rayleigh-Ritz method", Int. J. Mech. Sci., 36(3), 231-246. https://doi.org/10.1016/0020-7403(94)90072-8
- Rao, S.S. (2004), The Finite Element Method in Engineering, Elsevier Science and Technology Books, Miami.
- Reddy, J.N., Wang, C.M. and Kitipornchai, S. (1999), "Axisymmetric bending of functionally graded circular and annular plates", Euro. J. Mech. A/Solid., 18, 185-199. https://doi.org/10.1016/S0997-7538(99)80011-4
- Saidi, A.R., Rasouli, A. and Sahraee, S. (2009), "Axisymmetric bending and buckling analysis of thick functionally graded circulat plates using unconstrained third-order shear deformation plate theory", Compos. Struct., 89, 110-119. https://doi.org/10.1016/j.compstruct.2008.07.003
- Singh, B. and Chakraverty, S. (1991), "Transverse vibration of completely-free elliptic and circular plates using orthogonal polynomials in the Rayleigh-Ritz Method", Int. J. Mech. Sci. 33(9), 741-751. https://doi.org/10.1016/0020-7403(91)90069-F
- Singh, B. and Chakraverty, S. (1992), "Transverse vibration of simply supported elliptic and circular plates using boundary characteristic orthogonal polynomials in two variables", J. Sound Vib., 152(1), 149-155. https://doi.org/10.1016/0022-460X(92)90071-5
- Singh, B. and Chakraverty, S. (1992), "On the use of orthogonal polynomials in Rayleigh-Ritz method for the study of transverse vibrtion of elliptic plates", Comzput. Struct., 43(3), 439-443. https://doi.org/10.1016/0045-7949(92)90277-7
- Singh, B. and Chakraverty, S. (1994), "Use of characteristic orthogonal polynomials in two dimensions for transverse vibration of elliptic and circular plates with variable thickness", J. Sound Vib., 173(3), 289-299. https://doi.org/10.1006/jsvi.1994.1231
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aeros. Sci. Tech., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Wu, T.Y. and Liu, G.R. (2001), "Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule", Int. J. Solid. Struct., 38, 7967-7980. https://doi.org/10.1016/S0020-7683(01)00077-4
- Wu, T.Y., Wang, Y.Y. and Liu, G.R. (2002), "Free vibration analysis of circular plates using generalized differential quadrature rule", Comput. Meth. Appl. Mech. Eng., 191, 5365-5380. https://doi.org/10.1016/S0045-7825(02)00463-2
- Wang, C.M., Reddy, J.N. and Lee, K.H. (2000), Shear deformable beams and plates: Relationship with Classical Solutions, Elsevier, The Boulevard, Langford Lane, UK.
- Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Beg, O. (2014) "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aeros. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
- Zhao, D., Au, F.T.K., Cheung, Y.K. and Lo, S.H. (2003), "Three-dimensional vibration analysis of circular and annular plates via the Chebyshev-Ritz method", Int. J. Solid. Struct., 40, 3089-3105. https://doi.org/10.1016/S0020-7683(03)00114-8
- Zhang, D.G. (2013), "Nonlinear bending analysis of FGM elliptical plates resting on two-paramter elastic foudations", Appl. Math. Model., 37, 8292-8309. https://doi.org/10.1016/j.apm.2013.03.044
Cited by
- A curved hierarchical finite element method for the nonlinear vibration analysis of functionally graded sandwich elliptic plates 2018, https://doi.org/10.1080/15376494.2018.1430277
- Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations vol.10, pp.6, 2016, https://doi.org/10.12989/eas.2016.10.6.1429
- Thermal stability of functionally graded sandwich plates using a simple shear deformation theory vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.397
- An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.329
- Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory vol.18, pp.4, 2016, https://doi.org/10.12989/sss.2016.18.4.755
- Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory vol.57, pp.4, 2016, https://doi.org/10.12989/sem.2016.57.4.617
- The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review 2017, https://doi.org/10.1177/1077546317694724
- A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.547
- Thermal stability analysis of solar functionally graded plates on elastic foundation using an efficient hyperbolic shear deformation theory vol.10, pp.3, 2016, https://doi.org/10.12989/gae.2016.10.3.357
- Shooting method for free vibration of FGM Reissner-Mindlin circular plates resting on elastic foundation in thermal environments vol.19, pp.6, 2017, https://doi.org/10.21595/jve.2017.17815
- Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations vol.56, pp.1, 2015, https://doi.org/10.12989/sem.2015.56.1.085
- Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory vol.22, pp.4, 2016, https://doi.org/10.12989/was.2016.22.4.429
- An efficient shear deformation theory for wave propagation of functionally graded material plates vol.57, pp.5, 2016, https://doi.org/10.12989/sem.2016.57.5.837
- A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations vol.11, pp.2, 2016, https://doi.org/10.12989/gae.2016.11.2.289
- On thermal stability of plates with functionally graded coefficient of thermal expansion vol.60, pp.2, 2016, https://doi.org/10.12989/sem.2016.60.2.313
- Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.091
- A novel four variable refined plate theory for bending, buckling, and vibration of functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.473
- A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
- A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation vol.12, pp.1, 2015, https://doi.org/10.12989/gae.2017.12.1.009
- Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT vol.19, pp.3, 2015, https://doi.org/10.12989/sss.2017.19.3.289
- A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.385
- A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates vol.64, pp.4, 2015, https://doi.org/10.12989/sem.2017.64.4.391
- A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations vol.25, pp.6, 2015, https://doi.org/10.12989/scs.2017.25.6.717
- Free vibration of FGM plates with porosity by a shear deformation theory with four variables vol.66, pp.3, 2015, https://doi.org/10.12989/sem.2018.66.3.353
- A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2015, https://doi.org/10.12989/scs.2018.27.5.599
- A new quasi-3D higher shear deformation theory for vibration of functionally graded carbon nanotube-reinforced composite beams resting on elastic foundation vol.66, pp.6, 2018, https://doi.org/10.12989/sem.2018.66.6.771
- The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate vol.18, pp.2, 2015, https://doi.org/10.12989/gae.2019.18.2.161
- On the High-Temperature Free Vibration Analysis of Elastically Supported Functionally Graded Material Plates Under Mechanical In-PlaneForce Via GDQR vol.141, pp.10, 2019, https://doi.org/10.1115/1.4043489
- A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis vol.25, pp.1, 2020, https://doi.org/10.12989/cac.2020.25.1.037
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
- Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method vol.27, pp.1, 2015, https://doi.org/10.12989/cac.2021.27.1.073
- Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
- State of the art in functionally graded materials vol.262, pp.None, 2015, https://doi.org/10.1016/j.compstruct.2021.113596
- Buckling and free vibration characteristics of embedded inhomogeneous functionally graded elliptical plate in hygrothermal environment vol.235, pp.5, 2015, https://doi.org/10.1177/1464420720986899