DOI QR코드

DOI QR Code

Study of ball bearing fatigue damage using vibration analysis: application to thrust ball bearings

  • Yessine, Toumi M. (GRESPI/MAN, University of Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles) ;
  • Fabrice, Bolaers (GRESPI/MAN, University of Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles) ;
  • Fabien, Bogard (GRESPI/MAN, University of Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles) ;
  • Sebastien, Murer (GRESPI/MAN, University of Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles)
  • Received : 2014.05.16
  • Accepted : 2014.10.15
  • Published : 2015.01.25

Abstract

This paper presents a study based on the damage due to the fatigue life of thrust ball bearings using vibratory analysis. The main contribution of this work lies in establishing a relation between modal damping and the rolling contact fatigue damage of the thrust ball bearing. Time domain signals and frequency spectra are extracted from both static and dynamic experiments. The first part of this research consists in measuring the damping of damaged thrust ball bearings using impact hammer characterization tests. In a second part, indented components representing spalled bearings are studied to determine the evolution of damping values in real-time vibration spectra using the random decrement method. Dynamic results, in good agreement with static tests, show that damping varies depending on the component's damage state. Therefore, the method detailed in this work will offer a possible technique to estimate the thrust ball bearing fatigue damage variation in presence of spalling.

Keywords

References

  1. Ait Sghir, K., Randall, B., El Badaoui, M. and Guillet, M. (2007), "Milling cutting tool diagnosis using comparisons of the excitation identified by cepstral techniques", 5th Australasian Congress on Applied Mechanics.
  2. Asmussen JC. (1996), Estimation of correlation functions by random decrement. Proceedings of the ISMA21- Noise and Vibration Engineering II: 1215-1224.
  3. Asmussen, J.C. (1997), Modal analysis based on the random decrement technique - applications to civil engineering structures, Aalborg University, Denmark.
  4. Bedewi NE and Kung DN. (1997), Effect of fatigue loading on the modal properties of composite structures and its utilization for prediction of residual life. Composite Structures 37: 357-371. https://doi.org/10.1016/S0263-8223(97)00028-7
  5. Branch NA, Arakere NK, Svendsen V, et al. (2010), "Stress field evolution in a ball bearing raceway fatigue spall", J. ASTM Int., 7(2), 57-80.
  6. Cesnik, M., Slavic, J. and Boltezar, M. (2012), "Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping", J. Sound Vib., 331, 5370-5382. https://doi.org/10.1016/j.jsv.2012.06.022
  7. Christophe, J. (2001), Limite d'endurance et duree de vie en fatigue de roulement du 32CrMoV13 nitrure en presence d'indentations, L'institut National des Sciences Appliquees de Lyon.
  8. Colakoglu, M. (2003), "Description of fatigue damage using a damping monitoring technique", Turk. J. Eng. Envir. Sci., 27, 125-130.
  9. Cole, H.A. (1968), "On-the-line analysis of random vibrations", Structural Dynamics and Materials Conference, Palm Springs, AIAA/ASME 288.
  10. Curadelli, R.O., Riera, J.D., Ambrosini, D. and Amani, M.G. (2008), "Damage detection by means of structural damping identification", Eng. Struct., 30, 3497-3504. https://doi.org/10.1016/j.engstruct.2008.05.024
  11. da Mota, V.M.M.B., Moreira, P.M.G.P. and Ferreira, L.A.A. (2008), "A study on the effects of dented surfaces on rolling contact fatigue", Int. J. Fatigue., 30, 1997-2008. https://doi.org/10.1016/j.ijfatigue.2008.01.003
  12. Doebling, S.W. and Laboratory, L.A.N. (1996), Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in Their Vibration Characteristics: A Literature Review, Los Alamos National Laboratory.
  13. GuoB (2007), Identification simultanee des parametres de rigidite et d'amortissement de plaques isotropes minces en vibration par la methode des champs virtuels, L'ecole Nationale Superieure d'Arts et Metiers.
  14. Mazurek, D.F. and DeWolf, J.T. (1990), "Experimental study of bridge monitoring technique", J. Struct. Eng., 116, 2532-2549. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:9(2532)
  15. Gilchrist, M.D., Dulieu-Barton, J.M. and Worden, K. (1999), "Damage localization in reinforced concrete structures by using damping measurements", Key Eng. Mater., 132-141, 167-168. https://doi.org/10.4028/www.scientific.net/KEM.167-168.132
  16. Rosado, L., Forster, N.H., Thompson, K.L. and Cooke, J.W. (2010), "Rolling contact fatigue life and spall propagation of AISI M50, M50NiL, and AISI 52100, Part I: experimental results", Tribology Tran., 53, 29-41.
  17. Sadeghi, F., Jalalahmadi, B., Slack, T.S., Raje, N. and Arakere, N.K. (2009), "A review of rolling contact fatigue", J. Tribology., 131, 401-403.
  18. Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: a review", Eng. Struct., 19, 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  19. Voskamp, A.P. amd Mittemeijer, E.J. (1997), The effect of the changing microstructure on the fatigue behaviour during cyclic rolling contact loading, Allemagne, Hanser, Munchen.
  20. Vu, V.H., Thomas, M., Lakis, A.A. and Marcouiller, L. (2011), "Operational modal analysis by updating autoregressive model", Mech. Syst. Signal Pr., 25, 1028-1044. https://doi.org/10.1016/j.ymssp.2010.08.014
  21. Yan, Y.J., Cheng, L., Wu, Z.Y. and Yam, L.H. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21, 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002

Cited by

  1. Numerical simulation and experimental comparison of flaw evolution on a bearing raceway: case of thrust ball bearing 2018, https://doi.org/10.1016/j.jcde.2018.01.004
  2. Numerical determination of the mechanical stiffness of a force measurement device based on capacitive probes: Application to roller bearings vol.4, pp.1, 2017, https://doi.org/10.1016/j.jcde.2016.08.003
  3. Radiation noise of the bearing applied to the ceramic motorized spindle based on the sub-source decomposition method vol.410, 2017, https://doi.org/10.1016/j.jsv.2017.08.029
  4. A new fatigue damage accumulation rating life model of ball bearings under vibration load vol.72, pp.10, 2015, https://doi.org/10.1108/ilt-05-2019-0180