DOI QR코드

DOI QR Code

PL Study on ZnO Thin Films After H-plasma Treatment

수소 플라즈마 처리를 거친 ZnO 박막에 대한 PL 연구

  • Cho, Jaewon (Department of Electrophysics, Kwangwoon University) ;
  • Rhee, Seuk Joo (Department of Physics, Hankuk University of Foreign Studies)
  • 조재원 (광운대학교 전자물리학과) ;
  • 이석주 (한국외국어대학교 전자물리학과)
  • Received : 2014.10.22
  • Accepted : 2014.12.02
  • Published : 2015.01.01

Abstract

The physical effects of H-plasma treatment on ZnO thin film have been studied using photoluminescence(PL) spectroscopy. Four characteristic peaks have been identified: (i) $D^0X$ peak (neutral donor-bound exciton), showing relatively small integrated intensity after H-plasma treatment, indicates that H-plasma passivates the neutral donors in ZnO at low temperatures. The rapid decrease in the integrated intensity of the peak as the temperature goes up is considered to be due to the ionization of neutral donors. (ii) H-related complex-bound exciton peak appears at the low temperatures (10 K~80 K) after H-plasma treatment, showing the same thermal evolution as $D^0X$ peak. (iii) FX (free exciton) peak starts to show up at 60 K and grows more and more as the temperature goes up, which is considered to be related to the increase in free electron concentration in the film. (iv) violet band is intensified after H-plasma, which means more defects and impurities are generated by H-plasma process.

Keywords

References

  1. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys., 98, 041301 (2005). https://doi.org/10.1063/1.1992666
  2. S. J. Xu, W. Liu, and M. F. Li, Appl. Phys. Lett., 77, 3376 (2000). https://doi.org/10.1063/1.1327617
  3. H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, and B. K. Meyer, Opt. Mat., 23, 33 (2003). https://doi.org/10.1016/S0925-3467(03)00055-7
  4. J. Cho, J. Choi, S. G. Yu, and S. J. Rhee, J. Opt. Soc. of Korea, 17, 543 (2013). https://doi.org/10.3807/JOSK.2013.17.6.543
  5. D. W. Hamby, D. A. Lucca, J. K. Lee, M. Nastasi, H. S. Kang, and S. Y. Lee, Nuclear Instruments and Methods in Phys. Res. B, 249, 196 (2006). https://doi.org/10.1016/j.nimb.2006.03.113
  6. D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, J. Appl. Phys., 93, 3214 (2003). https://doi.org/10.1063/1.1545157
  7. Y. M. Strzhemechny, H. L. Mosbacker, D. C. Look, D. C. Reynolds, C. W. Litton, N. Y. Garces, N. C. Giles, L. E. Halliburton, S. Niki, and L. J. Brillson, Appl. Phys. Lett., 84, 2545 (2004). https://doi.org/10.1063/1.1695440
  8. M. D. McCluskey, S. J. Jokela, K. K. Zhuravlev, P. J. Simpson, and K. G. Lynn, Appl. Phys. Lett., 81, 3807 (2002). https://doi.org/10.1063/1.1520703
  9. Y. M. Strzhemechny, J. Nemergut, P. E. Smith, J. Bae, D. C. Look, and L. J. Brillson, J. Appl. Phys., 94, 4256 (2003). https://doi.org/10.1063/1.1606859
  10. Q. P. Wang, D. H. Zhang, Z. Y. Xue, and X. T. Hao, Appl. Surf. Sci., 201, 123 (2002). https://doi.org/10.1016/S0169-4332(02)00570-6