DOI QR코드

DOI QR Code

Grade 91 강의 고온 균열진전 실험 결과와 설계 물성치의 비교

Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel

  • 투고 : 2014.06.29
  • 심사 : 2014.10.30
  • 발행 : 2015.01.01

초록

본 연구에서는 피로 하중 및 크리프 하중을 받는 Mod.9Cr-1Mo (ASME Grade 91)강 시편에 대한 일련의 실험결과로부터 재료물성치인 고온 균열진전 모델을 개발하였다. 이 균열진전 모델은 크리프-피로하중을 받는 균열체의 결함평가에 사용되는 물성치이다. 한국원자력연구원이 수행한 일련의 피로 균열진전(FCG) 속도 실험 및 크리프 균열진전(CCG) 속도 실험 결과로부터 균열진전 모델을 결정하고, 이를 프랑스의 고온 설계 기술기준인 RCC-MRx 와 비교함으로써 설계 물성치의 보수성에 대해 검토하였다. RCC-MRx 는 FCG 모델 및 CCG 모델을 Section III Tome 6 에서 제공하고 있는데, 실험으로부터 결정한 균열진전 모델과 비교한 결과 RCC-MRx 의 FCG 모델은 보수적인 것으로 나타난 반면 CCG 모델은 비보수적인 것으로 나타나 동 물성치에 대한 검증이 필요한 것으로 나타났다. 또한 본 연구에서는 기계적 강도 및 크리프 시험결과에 대해서도 RCC-MRx 의 물성치와 비교 및 분석하였다.

The material properties of crack growth models at an elevated temperature were derived from the results of numerous crack growth tests for Mod.9Cr-1Mo (ASME Grade 91) steel specimens under fatigue loading and creep loading at an elevated temperature. These crack growth models were needed for defect assessment under creep-fatigue loading. The mathematical crack growth rate models for fatigue crack growth (FCG) and creep crack growth (CCG) were determined based on the test results, and the models were compared with those of the French design code RCC-MRx to investigate the conservatism of the code. The French design code RCC-MRx provides an FCG model and a CCG model for Grade 91 steel in Section III Tome 6. It was shown that the FCG model of RCC-MRx is conservative, while the CCG model is non-conservative compared with the present test data. Thus, it was shown that further validation of the property was required. Mechanical strength tests and creep tests were also conducted, and the test results were compared with those of RCC-MRx.

키워드

참고문헌

  1. Kim, Y. I., Lee, Y. B., Lee, C. B., Chang, J. W. and Choi, C. W., 2013, "Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea," Science and Technology of Nuclear Installations, Volume 2013, Article ID 290362, Hindawi Publishing Corporation.
  2. Lee, H. Y., Lee, S. H., Kim, J. B. and Lee, J. H., 2007, "Creep-Fatigue Damage for a Structure with Dissimilar Metal Welds of Mod 9Cr-1Mo and 316L Stainless Steel," International Journal of Fatigue, 29, pp.1868-1879. https://doi.org/10.1016/j.ijfatigue.2007.02.009
  3. Lee, H. Y., Song, K. N. and Kim, Y. W., 2010, "Evaluation of Creep-Fatigue Damage for Hot Gas Duct Structure of the NHDD Plant," Journal of Pressure Vessel Technology, Transactions of ASME, Vol.132,No.2, pp.1-8, April.
  4. ASME Boiler and Pressure Vessel Code, Section III, 2013, Rules for Construction of Nuclear Power Plant Components, Div. 1, Subsection NH, Class 1 Components in Elevated Temperature Service, ASME.
  5. RCC-MRx, Section III Subsection B, Class 1 N1RX, 2012, Reactor Components Its Auxiliary Systems and Supports, 2012 Edition, AFCEN.
  6. RCC-MRx, Section III Subsection Z, Appendix A16, 2012, Guide for Prevention of Fast Fracture, 2010 Edition (Draft), AFCEN.
  7. R5, 2003, Assessment Procedure for the High Temperature Response of Structures, Issue 3, British Energy Generation Ltd.
  8. API 579-1/ASME FFS-1, 2007, Fitness-For-Service.
  9. EU FP7 MATTER (MATerial Testing and Rules) Project Domain 2 (Pre-Normative R&D for Codes and Standards) Technical Meeting, Nov. 19-21, Paris, 2012.
  10. RCC-MRx, Section III Subsection Z, Appendix A3, 2012 Edition, AFCEN.
  11. RCC-MRx, Section III Tome 6, 2012, Probationary Phase Rules, 2012 Edition, AFCEN.
  12. ASME Boiler and Pressure Vessel Code, Section II, 2013, Part D Proerties, ASME.
  13. Tabuchi, M. and Takahashi, Y., 2012, "Evaluation of Creep Strength Reduction Factors for Welded Joints of Modified 9Cr-1Mo Steel," J. Pressure Vessel Technol. 134(3), 031401, May. https://doi.org/10.1115/1.4006131
  14. Kim, W. G., Park, J. Y., Lee, H. Y., Hong, S. D., Kim, Y. W. and Kim, S. J., 2013, "Time-Dependent Crack Growth Behavior for a SMAW Weldment of Gr.91 Steel," International Journal of Pressure Vessel and Piping, Vol. 110, pp.66-71. https://doi.org/10.1016/j.ijpvp.2013.04.024
  15. Ancelet, O. and Chapuliot, S., 2007, "Mechanical Behavior of HTR Materials : Developments in Support of Defect Assessment, Structural Integrity and Lifetime Evaluation," Proceedings of ICAPP 2007, Nice, France, May 13-18, Paper 7182.
  16. Lee, H. Y., Koo, G. H. and Lee, J. H., 2010, Assessment of the High Temperature Crack Behavior for a 316L Stainless Steel Structure with Defects, Journal of Mechanical Science and Technology, 24 (2), 481-487. https://doi.org/10.1007/s12206-009-1209-3
  17. Lee, H. Y., Eoh, J. H. and Lee, Y. B., 2013, "High Temperature Design and Damage Evaluation of a Helical Type Sodium-to-Air Heat Exchanger in a Sodium-Cooled Fast Reactor," Journal of Mechanical Science and Technology, Vol. 27, No.9, pp.2729-2735. https://doi.org/10.1007/s12206-013-0718-2
  18. Lee, H. Y., Eoh, J. H. and Lee, Y. B., 2013, "High-Temperature Design of Sodium-to-Air Heat Exchanger in Sodium Test Loop," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 5, pp. 665-671. https://doi.org/10.3795/KSME-A.2013.37.5.665