DOI QR코드

DOI QR Code

Performance of Heat Recovery System using Evaporative Cooling

증발냉각을 이용한 배기열 회수장치의 성능에 관한 연구

  • Yoo, Seong Yeon (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Tae Ho (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Myung Ho (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.)
  • 유성연 (충남대학교 기계설계공학과) ;
  • 김태호 (충남대학교 기계설계공학과) ;
  • 김명호 (충남대학교 기계설계공학과)
  • Received : 2014.05.13
  • Accepted : 2014.10.07
  • Published : 2015.01.01

Abstract

Evaporative cooling is a very effective way for exhaust heat recovery that uses both latent heat and sensible heat. This study investigated the performance of a heat recovery system using evaporative cooling. The experimental apparatus comprised a plastic heat exchanger, a water spray nozzle, an air blowing fan, a water circulation pump, and measuring sensors for the temperature, humidity, and flow rate. The effectiveness of the sensible heat recovery without evaporation was measured and compared with that of the total heat recovery with evaporation. The effectiveness of the sensible and total heat recoveries decreased as the air flow rate increased, and a much higher effectiveness was obtained with the counterflow arrangement in both cases. For total heat recovery, the effectiveness increased with the water flow rate, and the parallel flow arrangement was found to be more sensitive to the water flow rate than the counterflow arrangement.

현열 뿐만 아니라 잠열을 이용하는 증발냉각은 배기열 회수에 매우 유용하게 사용될 수 있다. 본 연구의 목적은 증발냉각을 이용한 배기열 회수장치의 성능을 실험적으로 규명하는 것이다. 성능실험장치는 플라스틱 열교환기, 물 분무 노즐, 공기유동용 홴, 물 순환용 펌프, 수조, 온도 습도 유량 측정 센서 등으로 구성되었다. 증발이 없는 현열 회수에서의 유용도와 증발을 수반하는 전열 회수에서의 유용도를 여러가지 작동조건에서 측정하여 비교하였다. 현열냉각과 증발냉각의 유용도는 공기의 유량이 증가함에 따라 감소하고, 대향류에서의 유용도가 평행류에서의 유용도 보다 휠씬 높다. 증발냉각의 경우 물 유량이 증가함에 따라 유용도는 증가하고, 평행류가 대향류보다 물 유량에 더 민감함을 알 수 있다.

Keywords

References

  1. Lee, B, Y., Chung, M. H. and Rhee, E. K., 2013, "Comparative Analysis of the University Building's Energy Consumption and Architectural Planning Factors," Proceedings of the Architectural Institute of Korea, Vol. 33, No. 1, pp. 257-258.
  2. Cerci, Y., 2003, "A new Ideal Evaporative Freezing Cycle," International Journal of Heat and Mass Transfer 46, pp. 2967-2974. https://doi.org/10.1016/S0017-9310(03)00072-3
  3. Joudi, K. A. and Mehdi, S. M., 2000, "Application of Indirect Evaporative Cooling to Variable Domestic Cooling Load," Energy Conversion & Management 41, pp. 1931-1951. https://doi.org/10.1016/S0196-8904(00)00004-2
  4. Gomez, E. V., Martinez, F.J.R., Diez, F. V., Leyva, M.J.M. and Martin, R. H., 2005, "Description and Experimental Results of a Semi-indirect Ceramic Evaporative Cooler," International Journal of Refrigeration 28, pp. 654-662. https://doi.org/10.1016/j.ijrefrig.2005.01.004
  5. Dai, Y. J. and Sumathy, K., 2002, "Theoretical Study on a Cross-flow Direct Evaporative Cooler Using Honeycomb Paper as Packing Material," Applied Thermal Engineering 23(13), pp. 1417-1430
  6. Johnson, D. W., Yavuzturk, C. and Pruis, J., 2003, "Analysis of Heat and Mass Transfer Phenomena in Hollow Fibre Membranes used for Evaporative Cooling," Journal of Membrane Science 227(1/2), pp. 159-171. https://doi.org/10.1016/j.memsci.2003.08.023
  7. Anyanwu, E. E., 2004, "Design and Measured Performance of a Porous Evaporative Cooler for Preservation of Fruits and Vegetables," Energy Conversion Manage 15, pp. 2187-2195.
  8. Pescod, D., 1968, "Unit Air Cooler Using Plastic Heat Exchanger with Evaporatively Cooled Plates," Australian refrigeration, Air conditioning and heating 22(9), pp. 22-26.
  9. Maclaine-cross, I. L. and Banks, P. J., 1981, "A General Theory of Wet Surface Heat Exchangers and its Application to Regenerative Cooling," ASME J. Heat Transfer 103, pp. 578-585.
  10. Duan, Z., Zhan, C., Zhang, X., Mustafa, M., Zhao, X., Alimohammadisagvand, B. and Hasan, A., 2012, "Indirect Evaporative Cooling: Past, Present and Future Potential," Renewable and Sustainable Energy Reviews 16, pp. 6823-6850. https://doi.org/10.1016/j.rser.2012.07.007
  11. Kim, M., H., Kim J., H., Kwon, O., H., Seok, Y., J. and Jeong, J., W., 2010, "Energy Saving Potentials of an 100% Outdoor Air System Integrated with Indirect and Direct Evaporative Coolers," Proceedings of the Architectural Institute of Korea, Vol. 26, No. 4, pp. 313-320.
  12. Keith, D., 2011, "Indirect Air-Side Economizer Cycle-Data Center Heat Rejection," ASHRAE Journal, No. 3, pp. 44-54.