DOI QR코드

DOI QR Code

Nanoparticles as Alternative Pesticides: Concept, Manufacturing and Activities

  • Ahmed, Ahmed I.S. (Plant Pathology Unit, Plant Protection Department, Desert Research Center) ;
  • Lee, Youn Su (Division of Bioresource Sciences, Kangwon National University)
  • Received : 2015.12.07
  • Accepted : 2015.12.08
  • Published : 2015.12.31

Abstract

Nanotechnology, which has become an important area of science, has caused an enormous developmental revolution in many fields. In the last two decades researchers have focused on overcoming the obstacles encountered during the preparation of nanoparticles. This article highlights the nanotechnology, along with a brief description of the manufacturing, concepts and activities of nanoparticles as alternative pesticides against plant pathogens, some methods for evaluation of nanoparticles against phytopathogens in vitro and in vivo, and explains the importance of some common nanoparticle types used in agricultural applications and plant pathology.

Keywords

References

  1. Drexler KE. Engines of creation: the coming era of nanotechnology. London: Fourth Estate; 1988.
  2. Drexler KE. Nanosystems: molecular machinery, manufacturing, and computation. New York: John Wiley & sons; 1992.
  3. Pattanayak M, Muralikrishnan T, Nayak PL. Green Synthesis of gold nanoparticles using Daucus carota (carrot) aqueous extract. World J Nano Sci Technol 2014;3:52-8.
  4. Biswas P, Wu CY. Nanoparticles and the environment. J Air Waste Manag Assoc 2005;55:708-46. https://doi.org/10.1080/10473289.2005.10464656
  5. Christof MN. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl 2001;40:4128-58. https://doi.org/10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  6. Buzea C, Pacheco II, Kevin R. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2:MR17. https://doi.org/10.1116/1.2815690
  7. Gao S, Zhao Y, Gou P, Chen N, Xie Y. Preparation of CuAlO2 nanocrystalline transparent thin films with high conductivity. Nanotechnolgy 2003;14:538-41. https://doi.org/10.1088/0957-4484/14/5/310
  8. Zong RL, Zhou J, Li B, Fu M, Shi SK, Li LT. Optical properties of transparent copper nanorod and nanowire arrays embedded in anodic alumina oxide. J Chem Phys 2005;123:094710. https://doi.org/10.1063/1.2018642
  9. Choi WS, Yadav DR, Kim SW, Lee YS, Park MR. Antibacterial effect of nickel nanoparticles on Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. J Agric Life Environ Sci 2015;27:in press.
  10. Ray PC, YU H, FU PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 2009;27:1-35. https://doi.org/10.1080/10590500802708267
  11. Flahaut E. Introduction to the special focus issue: environmental toxicity of nanoparticles. Foreword. Nanomedicine (Lond) 2010;5:949-50. https://doi.org/10.2217/nnm.10.56
  12. Bonnemann H, Richards RM. Nanoscopic metal particles: synthetic methods and potential applications. Eur J Inorg Chem 2001;2455-80.
  13. Ju-Nam Y, Lead JR. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 2008;400:396-414. https://doi.org/10.1016/j.scitotenv.2008.06.042
  14. Xu C, van Zalinge H, Pearson JL, Glidle A, Cooper JM, Cumming DR, Haiss W, Yao J, Schiffrin DJ, Proupin-Perez M, et al. A combined top-down bottom-up approach for introducing nanoparticle networks into nanoelectrode gaps. Nanotechnology 2006;17:3333-9. https://doi.org/10.1088/0957-4484/17/14/001
  15. Yin M, Willis A, Redl F, Turro NJ, O'Brien SP. Influence of capping groups on the synthesis of $Fe_2O_3$ nanocrystals. J Mater Res 2004;19:1208-15. https://doi.org/10.1557/JMR.2004.0157
  16. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 2014;9:385-406.
  17. Shenhar R, Rotello VM. Nanoparticles: scaffolds and building blocks. Acc Chem Res 2003;36:549-61. https://doi.org/10.1021/ar020083j
  18. Warren D. Green chemistry: a teaching resource. London: Royal Society of Chemistry; 2002.
  19. Clark JH, Macquarrie D. Handbook of green chemistry and technology. Oxford: Blackwell Science; 2002.
  20. Romeilah RM, Fayed SA, Mahmoud GI. Chemical compositions, antiviral and antioxidant activities of seven essential oils. J Appl Sci Res 2010;6:50-62.
  21. Li Y, Liu J, Wang Y, Wang ZL. Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater 2001;13:1008-14. https://doi.org/10.1021/cm000787s
  22. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev 2006;35:583-92. https://doi.org/10.1039/b502142c
  23. Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 2007;150:5-22. https://doi.org/10.1016/j.envpol.2007.06.006
  24. Schuler D, Frankel RB. Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 1999;52:464-73. https://doi.org/10.1007/s002530051547
  25. Suzuki Y, Kelly SD, Kemner KM, Banfield JF. Nanometre-size products of uranium bioreduction. Nature 2002;419:134. https://doi.org/10.1038/419134a
  26. Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 2000;289:751-4. https://doi.org/10.1126/science.289.5480.751
  27. Hansel CM, Benner SG, Nico P, Fendorf S. Structural constraints of ferric (hydr) oxides on dissimilatory iron reduction and the fate of Fe (II). Geochim Cosmochim Acta 2004;68:3217-29. https://doi.org/10.1016/j.gca.2003.10.041
  28. Wiesner MR, Lowry GV, Jones KL, Hochella MF Jr, Di Giulio RT, Casman E, Bernhardt ES. Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterial. Environ Sci Technol 2009;43:6458-62. https://doi.org/10.1021/es803621k
  29. Sioutas C, Delfino RJ, Singh M. Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 2005;113:947-55. https://doi.org/10.1289/ehp.7939
  30. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2004;104:293-346. https://doi.org/10.1021/cr030698+
  31. Shtykova EV, Huang X, Remmes N, Baxter D, Stein B, Dragnea B, Svergun DI, Bronstein LM. Structure and properties of iron oxide nanoparticles encapsulated by phospholipids with poly (ethylene glycol) tails. J Phys Chem C 2007;111:18078-86. https://doi.org/10.1021/jp075235c
  32. Baldassari S, Komarneni S, Mariani E, Villa C. Microwavehydrothermal process for the synthesis of rutile. Mater Res Bull 2005;40:2014-20. https://doi.org/10.1016/j.materresbull.2005.05.023
  33. Oskam G. Metal oxide nanoparticles: synthesis, characterization and application. J Solgel Sci Technol 2006;37:161-4. https://doi.org/10.1007/s10971-005-6621-2
  34. Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Environmental applications of semiconductor photocatalysis. Chem Rev 1995;95:69-96. https://doi.org/10.1021/cr00033a004
  35. Kamat PV. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 1993;93:267-300. https://doi.org/10.1021/cr00017a013
  36. Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 2012;93:95-9. https://doi.org/10.1016/j.saa.2012.03.002
  37. Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 2012;40:53-8. https://doi.org/10.5941/MYCO.2012.40.1.053
  38. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 2011;39:26-32. https://doi.org/10.4489/MYCO.2011.39.1.026
  39. Grancharov SG, Zeng H, Sun S, Wang SX, O'Brien S, Murray CB, Kirtley JR, Held GA. Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem B 2005;109:13030-5. https://doi.org/10.1021/jp051098c
  40. Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO. Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 1998;22:1239-55. https://doi.org/10.1039/a801445k
  41. Ding Y, Zhang G, Wu H, Hai B, Wang L, Qian Y. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape and structure via hydrothermal synthesis. Chem Mater 2001;3:435-40.
  42. Silva LG, Solis-Pomar F, Gutierrez-Lazos CD, Melendrez MF, Martinez E, Fundora A, Perez-Tijerina E. Synthesis of Fe nanoparticles functionalized with oleic acid synthesized by inert gas. J Nanomater 2014. http://dx.doi.org/10.1155/2014/643967.
  43. Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 2003;229:838-46. https://doi.org/10.1148/radiol.2293021215
  44. Widder KJ, Senyel AE, Scarpelli GD. Magnetic microspheres: A model system of site specific drug delivery in vivo. Proc Soc Exp Biol Med 1978;158:141-6. https://doi.org/10.3181/00379727-158-40158
  45. Perez JM. Iron oxide nanoparticles: hidden talent. Nat Nanotechnol 2007;2:535-6. https://doi.org/10.1038/nnano.2007.282
  46. Ramaswamy V, Jagtap NB, Vijayanand S, Bhange DS, Awati PS. Photocatalytic decomposition of methylene blue on nanocrystalline titania prepared by different methods. Mater Res Bull 2008;43:1145-52. https://doi.org/10.1016/j.materresbull.2007.06.003
  47. Kawai-Nakamura A, Sato T, Sue K, Tanaka S, Saitoh K, Aida K, Hiaki T. Rapid and continuous hydrothermal synthesis of metal and metal oxide nanoparticles with a microtube-reactor at 523 K and 30 MPa. Mater Lett 2008;62:3471-3. https://doi.org/10.1016/j.matlet.2008.02.081
  48. Li H, Duan X, Liu G, Jia X, Liu X. Morphology controllable synthesis of $TiO_2$ by a facile hydrothermal process. Mater Lett 2008;62:4035-7. https://doi.org/10.1016/j.matlet.2008.05.056
  49. Rashidzadeh M. Synthesis of high-thermal stable titanium dioxide nanoparticles. Int J Photoenergy 2008. http://dx.doi.org/10.1155/2008/245981.
  50. Kim JH, Lee GD, Park SS, Hong SS. Hydrothermal synthesis of titanium dioxides using acidic and basic peptizing agents and their photocatalytic activity on the decomposition of orange II. Stud Surf Sci Catal 2006;159:237-40. https://doi.org/10.1016/S0167-2991(06)81577-6
  51. Wang WN, Lenggoro IW, Terashi Y, Kim TO, Okuyama K. One-step synthesis of titanium oxide nanoparticles by spray pyrolysis of organic precursors. Mater Sci Eng B Solid State Mater Adv Technol 2005;123:194-202. https://doi.org/10.1016/j.mseb.2005.08.006
  52. Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 2008;279:71-6. https://doi.org/10.1111/j.1574-6968.2007.01012.x
  53. Aneesh PM, Vanaja KA, Jayaraj MK. Synthesis of ZnO nanoparticles by hydrothermal method. Proc SPIE Int Soc Opt Eng 2007;6639:66390J.
  54. Tarasenko N, Nevar A, Nedelko M. Properties of zinc-oxide nanoparticles synthesized by electrical-discharge technique in liquids. Physica Status Solidi A Appl Res 2010;207:2319-22. https://doi.org/10.1002/pssa.200925635
  55. Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GK. Synthesis and characterization of poly (vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem Mater 2000;12:2268-74. https://doi.org/10.1021/cm9907817
  56. He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 2010;166:207-15.
  57. Wani AH, Shah MA. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2012;2:40-4.
  58. Yehia RS, Ahmed OF. In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr J Microbiol Res 2013;7:1917-23. https://doi.org/10.5897/AJMR2013.5668
  59. Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther 2011;9:1035-52. https://doi.org/10.1586/eri.11.121
  60. Navale GR, M T, Late DJ, Shinde SS. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 2015;3:1033.
  61. Suleiman M, Al Ali A, Hussein A, Hammouti B, Hadda TB, Warad I. Sulfur nanoparticles: synthesis, characterizations and their applications. J Mater Environ Sci 2013;4:1029-33.
  62. Senel S, McClure SJ. Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev 2004;56:1467-80. https://doi.org/10.1016/j.addr.2004.02.007
  63. Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS). Carbohydr Polym 2005;62:357-68. https://doi.org/10.1016/j.carbpol.2005.08.012
  64. Gates BC. Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 1995;95:511-22. https://doi.org/10.1021/cr00035a003
  65. Chandra S, Kumar A, Tomar PK. Synthesis and characterization of copper nanoparticles by reducing agent. J Saudi Chem Soc 2014;18:149-53. https://doi.org/10.1016/j.jscs.2011.06.009
  66. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 2014;115:13-7. https://doi.org/10.1016/j.matlet.2013.10.011
  67. Raliya R, Tarafdar JC. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett 2014;4:93. https://doi.org/10.1007/s40089-014-0093-8
  68. Camtakan Z, Erenturk S, Yusan S. Magnesium oxide nanoparticles: preparation, characterization, and uranium sorption properties. Environ Prog Sustain Energy 2011;31:536-43.
  69. Rodriguez JA, Garcia MF. Synthesis, properties, and applications of oxide nanomaterials. Hoboken: Wiley-Interscience; 2007.
  70. Klabunde KJ. Nanoscale materials in chemistry. New York: Wiley-Interscience; 2001.
  71. Imada K, Sakai S, Kajihara H, Tanaka S, Ito S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 2015. http://dx.doi.org/10.1111/ppa.12443.
  72. Tolaymat TM, El badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 2010;408:999-1006. https://doi.org/10.1016/j.scitotenv.2009.11.003
  73. Elzey S, Grassian VH. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 2010;12:1945-58. https://doi.org/10.1007/s11051-009-9783-y
  74. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008;17:372-86. https://doi.org/10.1007/s10646-008-0214-0
  75. Pulit J, Banach M, Szczyg owska R, Bryk M. Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol 2013;60:795-8.
  76. Jung JH, Kim SW, Min JS, Kim YJ, Lamsal K, Kim KS, Lee YS. The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 2010;38:39-45. https://doi.org/10.4489/MYCO.2010.38.1.039
  77. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS. Effect of colloidal silver nanoparticles on sclerotium forming phytopathogenic fungi. Plant Pathol J 2009;25:376-80. https://doi.org/10.5423/PPJ.2009.25.4.376
  78. Kasprowicz MJ, Gorczyca A, Frandsen RJ. The effect of nanosilver on pigments production by Fusarium culmorum (W. G. Sm.) Sacc. Pol J Microbiol 2013;62:365-72.
  79. Kasprowicz MJ, Kozio M, Gorczyca A. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 2010;56:247-53. https://doi.org/10.1139/W10-012
  80. Aguilar-Mendez M, San Martin-Martinez E, Ortega-Arroyo L, Cobian-Portillo G, Sanchez-Espindola E. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 2011;13:2525-32. https://doi.org/10.1007/s11051-010-0145-6
  81. Kim SW, Adhikari M, Yadav DR, Lee HG, Um YH, Kim HS, Lee YS. Antimicrobial activity of nano materials against Acidovorax citrulli and other plant pathogens. Res Plant Dis 2015;21:12-9. https://doi.org/10.5423/RPD.2015.21.1.012
  82. Paulkumar K, Gnanajobitha G, Vanaja M, Rajeshkumar S, Malarkodi C, Pandian K, Annadurai G. Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. Sci World J 2014. http://dx.doi.org/10.1155/2014/829894.