DOI QR코드

DOI QR Code

압축 센싱 기법을 자기상관 필터뱅크 방식에 적용한 광대역 프로펠러 소음 추정 기법 연구

Study on Hidden Period Estimation in Propeller Noise by Applying Compressed Sensing to Auto-Correlation and Filter-Bank Structure

  • Lim, Jun-Seok (Sejong University Department of Electronic Engineering) ;
  • Pyeon, Yong-Guk (Gangwon Provincial University Department of Information and Communication) ;
  • Hong, Woo-Young (Sejong University Department of Defense System Engineering)
  • 투고 : 2015.08.17
  • 심사 : 2015.11.16
  • 발행 : 2015.12.30

초록

배의 방사 소음을 이용하여 배를 탐지하는 데는 협대역 톤을 추정하는 방법과 광대역 신호에 내포된 주기성 신호를 추정하는 방법이 있다. 그 중에서 광대역 신호에 내포된 주기성 신호를 추정하는 방법을 데몬 신호 처리법이라고 한다. 본 논문에서는 데몬 처리를 위해서 압출 센싱 기법을 자기 상관기 필터 뱅크에 적용한 기법을 제안한다. 그리고 합성된 신호와 실제 신호를 바탕으로 기존 방법들과 비교하여 기본 주파수 신호를 우수하게 추정할 뿐만 아니라 기존 방법에 비해서 짧은 신호 길이를 사용해도 우수한 성분 추정 성능을 할 수 있음을 보인다.

Narrow band signal estimation and broad band signal estimation can be used to detect the ship-radiated noise. The broad band signal estimation method to detect the ship-radiated noise is called DEMON (Detection of Envelop Modulation On Noise). This paper proposes a new DEMON algorithm applying compressed sensing algorithm to filter bank and autocorrelation. We show the proposed algorithm estimates the hidden period in the wide band signal better than the conventional DEMON algorithm and the recently proposed filter-bank based DEMON algorithm. Especially we show that the proposed algorithm needs shorter data length than the conventional DEMON algorithm.

키워드

참고문헌

  1. J. Cho, S. Lee, J. Shin, T. J. Lee, and H. S. Cho, "Underwater experiment on CSMA/CA protocol using commercial modems," J. KICS, vol. 39c, no. 6, pp. 457-465, Jul. 2014. https://doi.org/10.7840/kics.2014.39C.6.457
  2. D. Lee, S. Lee, and S. J. Park, "DSP-based micro-modem for underwater acoustic communications," J. KICS, vol. 39c, no. 3, pp. 275-281, Mar. 2014. https://doi.org/10.7840/kics.2014.39C.3.275
  3. B. M. Seo, K. Son, and H. S. Cho, "Performance evaluation of underwater code division multiple access scheme on forward-link through water-tank and lake experiment," J. KICS, vol. 39c, no. 2, pp. 199-208, Feb. 2014. https://doi.org/10.7840/kics.2014.39C.2.199
  4. Y. Jung, B. Kim, S. An, W. Seong, K. Lee, and J. Hahn, "An algorithm for submarine passive sonar simulator," The J. Acoustical Soc. Korea, vol. 32, no. 6, pp. 472-483, Nov. 2013. https://doi.org/10.7776/ASK.2013.32.6.472
  5. C. Seo, J. Park, K. Park, and J. Yoon, "Performance of COFDM in underwater acoustic channel with frequency selective fading," The J. Acoustical Soc. Korea, vol. 32, no. 5, pp. 377- 384, Sept. 2013. https://doi.org/10.7776/ASK.2013.32.5.377
  6. R. O. Nielsen, Sonar Signal Processing, Artech House, 1990.
  7. A. Kummert, "Fuzzy technology implemented in sonar systems," IEEE J. Oceanic Eng., vol. 18, no. 4, pp. 483-490, Oct. 1993. https://doi.org/10.1109/48.262298
  8. L. Sichum and Y. Desen, "DEMON feature extraction of acoustic vector signal based on 3/2-d specturm," in Proc. ICIEA'07, pp. 2239- 2243, Melbourne, Australia, May 2007.
  9. S. Badri and H. Amindavar, "Estimation of propeller shaft rate in multipath environment using nevanlinna-pick interpolation," in Proc. ISSPA'07, pp. 1-4, Sharjah, U.A.E, Feb. 2007.
  10. J. Lim and W. Hong, "A study on the hidden period estimation in the propeller radiation using EMD and auto-correlation," in Proc. KSCSP 2013, vol. 30, no. 1, pp. 57-60, Seoul, Korea, Aug. 2013.
  11. J. Lim and W. Hong, "A study on the hidden period estimation in the propeller radiation using cyclostationary spectral estimation and autocorrelation," in Proc. KSCSP 2013, vol. 30, no. 1, pp. 61-64, Seoul, Korea, Aug. 2013.
  12. M. Cheong, S. Hwang, S. Lee, and J. Kim, "Multiband enhancement for demon processing algorithms," The J. Acoustical Soc. Korea, vol. 32, no. 2, pp. 138-146, Mar. 2013. https://doi.org/10.7776/ASK.2013.32.2.138
  13. J. Lim, W. Hong, and Y. Pyeon, "Hidden period estimation in propeller noise using autocorrelation and filter-bank structure," J. KICS, vol. 39B, no. 8, pp. 538-543, Aug. 2014. https://doi.org/10.7840/kics.2014.39B.8.538
  14. X. Tan, W. Roberts, J. Li, and P. Stoica, "Sparse learning via iterative minimization with application to MIMO radar imaging," IEEE Trans. Signal Process., vol. 59, no. 3, pp. 1088-1101, 2011. https://doi.org/10.1109/TSP.2010.2096218
  15. W. Roberts, P. Stoica, J. Li, T. Yardibi, and F. A. Sadjadi, "Iterative adaptive approaches to MIMO radar imaging," IEEE J. Sel. Topics in Signal Process., vol. 4, no. 1, pp. 5-20, 2010. https://doi.org/10.1109/JSTSP.2009.2038964
  16. X. Tan, W. Roberts, J. Li, and P. Stoica, "A new sparse sensing approach for MIMO radar imaging," in Proc. the 8th Eur. Conf. Synthetic Aperture Radar, pp. 378-381 Aachen, Germany, Jun. 2010.
  17. T. Blumensath and M. E. Davies, "Iterative thresholding for sparse approximations," J. Fourier Anal. and Appl., vol. 14, no. 5, pp. 629-654, May 2008. https://doi.org/10.1007/s00041-008-9035-z
  18. T. Blumensath and M. Davies, "Iterative hard thresholding for compressed sensing," Applied and Computational Harmonic Anal., vol. 27, no. 3, pp. 265-274, Mar. 2009. https://doi.org/10.1016/j.acha.2009.04.002
  19. T. Blumensath and M. E. Davies, "Normalized iterative hard thresholding; guaranteed stability and performance," IEEE J. Sel. Topics in Signal Process., vol. 4, no. 2, pp. 298-309, Feb. 2010. https://doi.org/10.1109/JSTSP.2010.2042411