DOI QR코드

DOI QR Code

Creep of concrete at variable stresses and heating

  • Klovanych, Sergei (Faculty of Geodesy, Geospatial and Civil Engineering, University of Warmia and Mazury in Olsztyn)
  • Received : 2015.02.24
  • Accepted : 2015.12.11
  • Published : 2015.12.25

Abstract

This article gives analytical dependences for creep of concrete at heating, taking into account conditions of its drying. These dependences are based on the standard nonlinear theory of creep of concrete at a normal temperature and temperature-time analogy. For the description of creep at various stresses and temperatures the principle of superposition are used. All stages of model's creation are confirmed by the existing experimental data. Calculation examples are given.

Keywords

References

  1. Alexandrovskii, S.V. (1973), Calculation of concrete and reinforced concrete constructions on the changes of temperature and humidity, taking into account the creep, Stroyizdat, Moskow. (in Russian)
  2. Barani, O.R., Mostofinejaad, D., Saadatpour, M.M. and Shekarchi, M. (2010), "Concrete basic creep prediction based on time-temperature equivalence relation and short-term tests", Arabian J. Sci. Eng. 35(28), 106-121.
  3. Bazant, Z.P. (1985), "Concrete creep at variable humidity: constitutive law and mechanism", Materiaux et Constructions, 18(103), 1-19.
  4. Bazant, Z.P. and Cusatis, G. (2005), "Creep, diffusion and fracture in heated concrete structures: recent progress", Proc.of the Sixth Int.Congr. on Thermal Stresses TS2005, Vienna Univ. of Tech., Vienna.
  5. Bazant, Z.P., Cusatis, G. and Cedolin, L. (2004), "Temperature effect on concrete creep modeled by microstress-solidification theory", J. Eng. Mech., 130(6), 691-699. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(691)
  6. Bazant, Z.P. and Wittman, F.H. (1982), Creep and shrinkage in concrete structures, John Wiley and Sons, Chichster, New York, Brisbaine, Toronto, Singapure.
  7. Briffaut, M., Benboudjema, F., Torrenti, J.M. and Nahas, G. (2012), "Concrete early age basic creep: experiments and test of rheological modeling approaches", Constr. Build. Mater., 36, 373-380. https://doi.org/10.1016/j.conbuildmat.2012.04.101
  8. Dias-da-Costa, D. and Julio, E.N.B.S. (2010), "Modelling creep of high strength concrete", Comput. Concr., 7(6), 533-547. https://doi.org/10.12989/cac.2010.7.6.533
  9. Fahmi, H.M., Polivka, M. and Bresler, B. (1972), "Effect of sustained and cyclic elevated temperature on creep of concrete", Cem. Concr. Res., 2, 591-606. https://doi.org/10.1016/0008-8846(72)90113-5
  10. Gernay, T. and Franssen, J.M. (2012), "A formulation of the Eurocode2 concrete mode at elevated temperature that includes an explicit term for transient creep", Fire Safety J., 51, 1-9. https://doi.org/10.1016/j.firesaf.2012.02.001
  11. Gernay, T., Millard, A. and Franssen, J.M. (2013), "A multiaxial constitutive model for concrete in the fire situation: Theoretical formulation", Int. J. Solids Struct., 50, 3659-3673. https://doi.org/10.1016/j.ijsolstr.2013.07.013
  12. Hannant, D.J. (1968), "Strain behavior of concrerte up to $95^{\circ}C$ under compressive stresses", J. Civ. Eng., London, 177-191.
  13. Havlasek, P. and Jirasek, M. (2012), "Modeling of concrete creep based on microstress-solidification theory", Acta Politechnuca, 52(2), 34-42.
  14. Jiang, W., De Schutter, G. and Yuan, Y. (2014), "Degree of hydration based prediction of early age basic creep and creep recovery of blended concrete", Cement Concr. Comp., 48, 83-90. https://doi.org/10.1016/j.cemconcomp.2013.10.012
  15. Jirasek, M. and Havlasek, P. (2014), "Microprestress-solidification theory of concrete creep: Reformulation and improvement", Cement Concr. Res., 60, 51-62. https://doi.org/10.1016/j.cemconres.2014.03.008
  16. Krichevskii, A.P. (1984), Calculation of reinforced concrete engineering constructions on temperature loads, Stroyizdat, Moskow. (in Russian)
  17. Maia, L. and Figueiras, J. (2012), "Early-age creep deformation of a high strength self-compacting concrete", Constr. Build. Mater., 34, 602-610. https://doi.org/10.1016/j.conbuildmat.2012.02.083
  18. Mazloom, M. (2008), "Estimating long-term creep and shrinkage of high-strength concrete", Cement Concr. Comp., 30, 316-326. https://doi.org/10.1016/j.cemconcomp.2007.09.006
  19. Mc Donald. (1971), "An experimental study of multiaxial creep of concrete", Amer. Concr. Inst. J. Proc., 34(2),735-768.
  20. Milovanov, A.F. (1975), Calculation of heat-resistant reinforced concrete construction, Stroyizdat, Moskow. (in Russian)
  21. Nasser, K.W. and Newill, A.M. (1967), "Creep of concrete et alevated temperatures", Am. Concr. Inst. J. Proc., 62(12), 1567-1580.
  22. Ouedraogo, E., Roosefid, M., Prompt, N. and Deteuf, C. (2011), "Refractory concretes uniaxial compression behaviour under high temperature testing conditions", J. Eur. Cer. Soc., 31, 2763-2774. https://doi.org/10.1016/j.jeurceramsoc.2011.07.017
  23. Pichler, Ch. and Lackner, R. (2008), "A multiscale creep model as basis for simulation of early-age concrete behavior", Comput. Concr., 5(4), 295-328. https://doi.org/10.12989/cac.2008.5.4.295
  24. Prokopovich, I.E. and Zedgenidze, V.A. (1980), Applied theory of creep, Stroyizdat, Moskow. (in Russian)
  25. Rossi, P., Tailhan, J.L. and Le Maou, F. (2013), "Comparison of concrete creep in tension and in compression: Influence of concrete age at loading and drying conditions", Cement Concr. Res., 51, 78-84. https://doi.org/10.1016/j.cemconres.2013.04.001
  26. Schlicke, D. and Viet Tue, N. (2013), "Considaration of viscoelasticity in time stem FEM-based restraint analyses of hardening concrete", J. Mod. Phys., 4, 9-14.
  27. Scordelis, A.C. (1984), "Computer models for nonlinear analysis of reinforced and prestressed concrete structures", J. Prestr. Concr. Inst., 29(6), 116-135.
  28. Thelandersson, S. (1987), "Modelling of combined thermal and mechanical action in concrete", J. End. Mech., 118(6), 893-906.
  29. Trapko, T., Kaminski, M. and Musial, M. (2012), "Investigations on reological strains compressed concrete elements strengthened with external composite reinforcement", CFRP, Compos. Part B, 43, 1417-1424. https://doi.org/10.1016/j.compositesb.2011.09.009
  30. Yao, X. and Wei, Y. (2014), "Design and verification of a testing system for strength, modulus, and humidity conditions", Constr. Build. Mater., 53, 448-454. https://doi.org/10.1016/j.conbuildmat.2013.12.009
  31. Youssef, M.A. and Moftah, M. (2007), "General stress-strain relationship for concrete at elevated temperatures", Eng. Struct., 29, 2618-2634. https://doi.org/10.1016/j.engstruct.2007.01.002

Cited by

  1. Deformation of high performance concrete plate under humid tropical weather vol.316, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/316/1/012036
  2. Prediction of creep in concrete using genetic programming hybridized with ANN vol.21, pp.5, 2015, https://doi.org/10.12989/cac.2018.21.5.513
  3. Modeling and Sensitivity Analysis of Concrete Creep with Machine Learning Methods vol.33, pp.8, 2015, https://doi.org/10.1061/(asce)mt.1943-5533.0003843