References
- Alexandrovskii, S.V. (1973), Calculation of concrete and reinforced concrete constructions on the changes of temperature and humidity, taking into account the creep, Stroyizdat, Moskow. (in Russian)
- Barani, O.R., Mostofinejaad, D., Saadatpour, M.M. and Shekarchi, M. (2010), "Concrete basic creep prediction based on time-temperature equivalence relation and short-term tests", Arabian J. Sci. Eng. 35(28), 106-121.
- Bazant, Z.P. (1985), "Concrete creep at variable humidity: constitutive law and mechanism", Materiaux et Constructions, 18(103), 1-19.
- Bazant, Z.P. and Cusatis, G. (2005), "Creep, diffusion and fracture in heated concrete structures: recent progress", Proc.of the Sixth Int.Congr. on Thermal Stresses TS2005, Vienna Univ. of Tech., Vienna.
- Bazant, Z.P., Cusatis, G. and Cedolin, L. (2004), "Temperature effect on concrete creep modeled by microstress-solidification theory", J. Eng. Mech., 130(6), 691-699. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(691)
- Bazant, Z.P. and Wittman, F.H. (1982), Creep and shrinkage in concrete structures, John Wiley and Sons, Chichster, New York, Brisbaine, Toronto, Singapure.
- Briffaut, M., Benboudjema, F., Torrenti, J.M. and Nahas, G. (2012), "Concrete early age basic creep: experiments and test of rheological modeling approaches", Constr. Build. Mater., 36, 373-380. https://doi.org/10.1016/j.conbuildmat.2012.04.101
- Dias-da-Costa, D. and Julio, E.N.B.S. (2010), "Modelling creep of high strength concrete", Comput. Concr., 7(6), 533-547. https://doi.org/10.12989/cac.2010.7.6.533
- Fahmi, H.M., Polivka, M. and Bresler, B. (1972), "Effect of sustained and cyclic elevated temperature on creep of concrete", Cem. Concr. Res., 2, 591-606. https://doi.org/10.1016/0008-8846(72)90113-5
- Gernay, T. and Franssen, J.M. (2012), "A formulation of the Eurocode2 concrete mode at elevated temperature that includes an explicit term for transient creep", Fire Safety J., 51, 1-9. https://doi.org/10.1016/j.firesaf.2012.02.001
- Gernay, T., Millard, A. and Franssen, J.M. (2013), "A multiaxial constitutive model for concrete in the fire situation: Theoretical formulation", Int. J. Solids Struct., 50, 3659-3673. https://doi.org/10.1016/j.ijsolstr.2013.07.013
-
Hannant, D.J. (1968), "Strain behavior of concrerte up to
$95^{\circ}C$ under compressive stresses", J. Civ. Eng., London, 177-191. - Havlasek, P. and Jirasek, M. (2012), "Modeling of concrete creep based on microstress-solidification theory", Acta Politechnuca, 52(2), 34-42.
- Jiang, W., De Schutter, G. and Yuan, Y. (2014), "Degree of hydration based prediction of early age basic creep and creep recovery of blended concrete", Cement Concr. Comp., 48, 83-90. https://doi.org/10.1016/j.cemconcomp.2013.10.012
- Jirasek, M. and Havlasek, P. (2014), "Microprestress-solidification theory of concrete creep: Reformulation and improvement", Cement Concr. Res., 60, 51-62. https://doi.org/10.1016/j.cemconres.2014.03.008
- Krichevskii, A.P. (1984), Calculation of reinforced concrete engineering constructions on temperature loads, Stroyizdat, Moskow. (in Russian)
- Maia, L. and Figueiras, J. (2012), "Early-age creep deformation of a high strength self-compacting concrete", Constr. Build. Mater., 34, 602-610. https://doi.org/10.1016/j.conbuildmat.2012.02.083
- Mazloom, M. (2008), "Estimating long-term creep and shrinkage of high-strength concrete", Cement Concr. Comp., 30, 316-326. https://doi.org/10.1016/j.cemconcomp.2007.09.006
- Mc Donald. (1971), "An experimental study of multiaxial creep of concrete", Amer. Concr. Inst. J. Proc., 34(2),735-768.
- Milovanov, A.F. (1975), Calculation of heat-resistant reinforced concrete construction, Stroyizdat, Moskow. (in Russian)
- Nasser, K.W. and Newill, A.M. (1967), "Creep of concrete et alevated temperatures", Am. Concr. Inst. J. Proc., 62(12), 1567-1580.
- Ouedraogo, E., Roosefid, M., Prompt, N. and Deteuf, C. (2011), "Refractory concretes uniaxial compression behaviour under high temperature testing conditions", J. Eur. Cer. Soc., 31, 2763-2774. https://doi.org/10.1016/j.jeurceramsoc.2011.07.017
- Pichler, Ch. and Lackner, R. (2008), "A multiscale creep model as basis for simulation of early-age concrete behavior", Comput. Concr., 5(4), 295-328. https://doi.org/10.12989/cac.2008.5.4.295
- Prokopovich, I.E. and Zedgenidze, V.A. (1980), Applied theory of creep, Stroyizdat, Moskow. (in Russian)
- Rossi, P., Tailhan, J.L. and Le Maou, F. (2013), "Comparison of concrete creep in tension and in compression: Influence of concrete age at loading and drying conditions", Cement Concr. Res., 51, 78-84. https://doi.org/10.1016/j.cemconres.2013.04.001
- Schlicke, D. and Viet Tue, N. (2013), "Considaration of viscoelasticity in time stem FEM-based restraint analyses of hardening concrete", J. Mod. Phys., 4, 9-14.
- Scordelis, A.C. (1984), "Computer models for nonlinear analysis of reinforced and prestressed concrete structures", J. Prestr. Concr. Inst., 29(6), 116-135.
- Thelandersson, S. (1987), "Modelling of combined thermal and mechanical action in concrete", J. End. Mech., 118(6), 893-906.
- Trapko, T., Kaminski, M. and Musial, M. (2012), "Investigations on reological strains compressed concrete elements strengthened with external composite reinforcement", CFRP, Compos. Part B, 43, 1417-1424. https://doi.org/10.1016/j.compositesb.2011.09.009
- Yao, X. and Wei, Y. (2014), "Design and verification of a testing system for strength, modulus, and humidity conditions", Constr. Build. Mater., 53, 448-454. https://doi.org/10.1016/j.conbuildmat.2013.12.009
- Youssef, M.A. and Moftah, M. (2007), "General stress-strain relationship for concrete at elevated temperatures", Eng. Struct., 29, 2618-2634. https://doi.org/10.1016/j.engstruct.2007.01.002
Cited by
- Deformation of high performance concrete plate under humid tropical weather vol.316, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/316/1/012036
- Prediction of creep in concrete using genetic programming hybridized with ANN vol.21, pp.5, 2015, https://doi.org/10.12989/cac.2018.21.5.513
- Modeling and Sensitivity Analysis of Concrete Creep with Machine Learning Methods vol.33, pp.8, 2015, https://doi.org/10.1061/(asce)mt.1943-5533.0003843