참고문헌
- Al-Shayea, N.A. (2005), "Crack propagation trajectories for rocks under mixed mode I-II fracture", Eng. Geol., 81(1), 84-97. https://doi.org/10.1016/j.enggeo.2005.07.013
- Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk", Int. J. Fract., 18(4), 279-291. https://doi.org/10.1007/BF00015688
- Ayatollahi, M.R. and Aliha, M.R.M. (2008), "On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials", Eng. Fract. Mech., 75(16), 4631-4641. https://doi.org/10.1016/j.engfracmech.2008.06.018
- Ayatollahi, M.R. and Sistaninia, M. (2011), "Mode II fracture study of rocks using Brazilian disk specimens", Int. J. Rock Mech. Min., 48(5), 819-826. https://doi.org/10.1016/j.ijrmms.2011.04.017
- Bieniawski, Z.T. (1967), "Mechanism of brittle fracture of rock part II-experimental studies", Int. J. Rock Mech. Min., 4(4) 407-423. https://doi.org/10.1016/0148-9062(67)90031-9
- Chen, J.T. and Hong, H.K. (1999), "Review of dual boundary element methods with emphasis on hyper singular integrals and divergent series", Appl. Mech. Rev., 52(1), 17-33. https://doi.org/10.1115/1.3098922
- Cheng-zhi, P. and Ping, C. (2012), "Breakage characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", Tran. Nonferrous Met. Soc. China, 22(1), 185-191. https://doi.org/10.1016/S1003-6326(11)61159-X
- Crouch, S.L. (1967), "Analysis of stresses and displacements around underground excavations: an application of the displacement discontinuity method", University of Minnesota Geomechanics Report, Minneapolis, Minnesota.
- Dai, F. Chen, R, Iqbal, M.J. and Xia, K. (2010), "Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters", Int. J. Rock Mech. Min., 47(4), 606-613. https://doi.org/10.1016/j.ijrmms.2010.04.002
- Dai, F., Xia, K., Zheng, H. and Wang, Y.X. (2011), "Determination of dynamic rock mode-I fracture parameters using cracked chevron notched semi-circular bend specimen", Eng. Fract. Mech., 78, 2633-2644. https://doi.org/10.1016/j.engfracmech.2011.06.022
- Haeri, H. (2015a), Coupled experimental-numerical fracture mechanics, Lambert Academic Press, Germany.
- Haeri, H. (2015b), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
- Haeri, H. (2015c), "Simulating the crack propagation mechanism of pre-cracked rock like shear specimens", Strength. Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
- Hoek, E. and Bieniawski, Z.T. (1965), "Brittle rock fracture propagation in rock under compression, South African council for scientific and industrial research pretoria. Int. J. Frac. Mech. 1(3), 137-155. https://doi.org/10.1007/BF00186851
- Ingraffea, A.R. (1985), "Fracture Propagation in Rock", Mech. Geomater. 219-258.
- Irwin, G.R. (1957), "Analysis of stress and strains near the end of a crack", J. Appl. Mech., 24, 361.
- Janeiro, R.P and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract. 164, 83-102. https://doi.org/10.1007/s10704-010-9457-x
- Ke, C.C, Chen, C.S and Tu, C.H (2008), "Determination of fracture toughness of anisotropic rocks by boundary element method", Rock Mech. Rock Eng., 41(4), 509-538. https://doi.org/10.1007/s00603-005-0089-9
- Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solid. Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001
- Natarajana, S., Mahapatrab, D.R. and Bordas, S.P.A. (2010), "Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework", Int. J. Numer Meth. Eng., 83, 269-294.
- Park, C.H. and Bobet, A. (2010), "Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027
- Ravi-Chandar, K. and Knauss, W.G. (1984), "An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching", Int. J. Fract. 26(2), 141-154. https://doi.org/10.1007/BF01157550
- Scavia, C. (1990), "Fracture mechanics approach to stability analysis of crack slopes", Eng. Fract. Mech., 35(4), 889-910. https://doi.org/10.1016/0013-7944(90)90173-E
- Shen, B., Stephansson, O., Einstein, H.H. and Ghahreman, B. (1995), "Coalescence of fractures under shear stress experiments", J. Geophys. Res., 100(B4), 5975-5990. https://doi.org/10.1029/95JB00040
- Shou, K.J. and Crouch, S.L. (1995), "A higher order displacement discontinuity method for analysis of crack problems", Int. J. Rock Mech. Min. Sci. Geomech., 32(1), 49-55. https://doi.org/10.1016/0148-9062(94)00016-V
- Wallin, K. (2013), "A simple fracture mechanical interpretation of size effects in concrete fracture toughness tests", Eng. Fract. Mech., 99, 18-29. https://doi.org/10.1016/j.engfracmech.2013.01.018
- Wang, Q.Z (2010), "Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci., 47(6), 1006-1011. https://doi.org/10.1016/j.ijrmms.2010.05.005
- Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004
- Wang, Q.Z., Gou, X.P. and Fan, H. (2012), "The minimum dimensionless stress intensity factor and its upper bound for CCNBD fracture toughness specimen analyzed with straight through crack assumption", Eng. Fract. Mech., 82, 1-8. https://doi.org/10.1016/j.engfracmech.2011.11.001
- Whittaker, B.N., Singh, R.N. and Sun, G. (1992), Rock fracture mechanics principles, design and applications, developments in geotechnical engineering, Elsevier, Amsterdam.
- Yang, Q., Dai, Y.H., Han, L.J. and Jin, Z.Q. (2009), "Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression", Eng. Fract. Mech., 76(12), 1833-1845. https://doi.org/10.1016/j.engfracmech.2009.04.005
- Yang, S.Q (2011), "Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation breakage", Eng. Fract. Mech., 78(17), 3059-3081. https://doi.org/10.1016/j.engfracmech.2011.09.002
피인용 문헌
- The effect of non-persistent joints on sliding direction of rock slopes vol.17, pp.6, 2016, https://doi.org/10.12989/cac.2016.17.6.723
- A review of experimental and numerical investigations about crack propagation vol.18, pp.2, 2016, https://doi.org/10.12989/cac.2016.18.2.235
- Effect of tensile strength of rock on tensile fracture toughness using experimental test and PFC2D simulation vol.52, pp.4, 2016, https://doi.org/10.1134/S1062739116041046
- Suggesting a new testing device for determination of tensile strength of concrete vol.60, pp.6, 2016, https://doi.org/10.12989/sem.2016.60.6.939
- Numerical simulation of tensile failure of concrete using Particle Flow Code (PFC) vol.18, pp.1, 2016, https://doi.org/10.12989/cac.2016.18.1.039
- The deformable multilaminate for predicting the Elasto-Plastic behavior of rocks vol.18, pp.2, 2016, https://doi.org/10.12989/cac.2016.18.2.201
- Numerical simulation of hydraulic fracturing in circular holes vol.18, pp.6, 2015, https://doi.org/10.12989/cac.2016.18.6.1135
- Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC) vol.19, pp.1, 2015, https://doi.org/10.12989/cac.2017.19.1.099
- Direct and indirect methods for determination of mode I fracture toughness using PFC2D vol.20, pp.1, 2015, https://doi.org/10.12989/cac.2017.20.1.039
- The effect of compression load and rock bridge geometry on the shear mechanism of weak plane vol.13, pp.3, 2015, https://doi.org/10.12989/gae.2017.13.3.431
- Compression‐induced crack initiation and growth in flawed rocks: A review vol.44, pp.7, 2021, https://doi.org/10.1111/ffe.13477
- Experimental Study of Prefabricated Crack Propagation in Coal Briquettes under the Action of a CO2 Gas Explosion vol.6, pp.38, 2021, https://doi.org/10.1021/acsomega.1c02850