Acknowledgement
Supported by : Ministry of Science and Technology of China, National Natural Science Foundation of China
References
- Bary, B., Leterrier, N., Deville, E. and Bescop, P.L. (2014), "Coupled chemo-transport-mechanical modelling and numerical simulation of external sulfate attack in mortar", Cement Concrete Comp., 49(5), 70-83. https://doi.org/10.1016/j.cemconcomp.2013.12.010
- Basista, M. and Weglewski, W. (2008), "Micromechanical modeling of sulphate corrosion in concrete: influence of ettringite forming reaction", Theor. Appl.Mech., 35(2), 29-52. https://doi.org/10.2298/TAM0803029B
- Bassuoni, M.T. and Nehdi, M.L. (2008), "Neuro-fuzzy based prediction of the durability of selfconsolidating concrete to various sodium sulfate exposure regimes", Comput. Concrete, 5(6), 573-597. https://doi.org/10.12989/cac.2008.5.6.573
- Bonakdar, A., Mobasher, B. and Chawla, N. (2012), "Diffusivity and micro-hardness of blended cement materials exposed to external sulfate attack", Cement Concrete Comp., 34(1), 76-85. https://doi.org/10.1016/j.cemconcomp.2011.08.016
-
Diamidot, D. and Glasser F.P. (1993), "Thermodynamic investigation of the CaO-
$Al_2O_3$ -$CaSO_4{\cdot}2H_2O$ system at$25^{\circ}C$ and the influence of Na2O", Cement Concrete Res., 23(1), 221. https://doi.org/10.1016/0008-8846(93)90153-Z - Feng, P., Miao, C.W. and Bullard, J.W. (2014), "A model of phase stability, microstructure and properties during leaching of Portland cement binders", Cement Concrete Comp., 49, 9-19 https://doi.org/10.1016/j.cemconcomp.2014.01.006
- Garboczi, E.J. (1990) "Permeability, diffusivity, and microstructural parameters: a critical review", Cement Concrete Res., 20(90), 591-601. https://doi.org/10.1016/0008-8846(90)90101-3
- Garboczi, E.J. and Bentz, D.P. (1992), "Computer simulation of the diffusivity of cement-based materials", J. Mater. Sci., 27(8), 2083-2092. https://doi.org/10.1007/BF01117921
- Gospodinov, P., Kazandjiev, R. and Mironova, M. (1996), "The effect of sulfate ion diffusion on the structure of cement stone", Cement Concrete Comp., 18(6), 401-407. https://doi.org/10.1016/S0958-9465(96)00032-7
- Gospodinov, P.N., Kazandjiev, R.F., Partalin, T.A. and Mironova, M.K. (1999), "Diffusion of sulfate ions into cement stone regarding simultaneous chemical reactions and resulting effects", Cement Concrete Res., 29, 1591-1596. https://doi.org/10.1016/S0008-8846(99)00138-6
- Gospodinov, P., Kazandjiev, R. and Mironova, M. (2007a), "Mechanisms of sulfate ionic diffusion in porous cement based composites", Comput. Concrete, 4(4), 273-284. https://doi.org/10.12989/cac.2007.4.4.273
- Gospodinov, P., Kazandjiev, R. and Mironova, M. (2007b), "Mechanisms of sulfate ionic diffusion in porous cement based composites: effect of capillary size change", Comput. Concrete, 4(2), 273-284. https://doi.org/10.12989/cac.2007.4.4.273
- Guo, Z.H. and Shi, X.D. (2003), Theory and analysis of reinforced concrete, Tsinghua University Press, Beijing, China.
- Idiart, A.E., Lopez, C.M. and Carol, I. (2011), "Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: a meso-scale model", Cement Concrete Comp., 33(3), 411-423. https://doi.org/10.1016/j.cemconcomp.2010.12.001
- Koukkari, P. and Pajarre, R. (2007), "Combining reaction kinetics to the multi-phase gibbs energy calculation", Comput. Aided Chem. Eng., 24(7), 153-158. https://doi.org/10.1016/S1570-7946(07)80049-6
- Neville, A. (2004), "The confused world of sulfate attack on concrete", Cement Concrete Res., 34(8), 1275-1296. https://doi.org/10.1016/j.cemconres.2004.04.004
- Page, C.L., Short, N.R. and Tarras, A.E. (1981), "Diffusion of chloride ions in hardened cement pastes", Cement Concrete Res., 11(3), 395-406. https://doi.org/10.1016/0008-8846(81)90111-3
- Peng, J.H., Zhang, J.X. and Qu, J. (2006), "The mechanism of formation and transformation of ettringite", Journal of Wuhan University of Technology - Mater. Sci. Ed., 21(3), 158-161. https://doi.org/10.1007/BF02840908
- Prince, W., Espagne, M. and AiTcin, P.C. (2003) "Ettringite formation: a crucial step in cement superplasticizer compatibility", Cement Concrete Res., 33(5), 635-641. https://doi.org/10.1016/S0008-8846(02)01042-6
- Samson, E. and Marchand, J. (2007), "Modeling the transport of ions in unsaturated cement-based materials", Comput. Struct., 85(23), 1740-1756. https://doi.org/10.1016/j.compstruc.2007.04.008
- Song, Z., Jiang, L., Chu, H., Xiong, C., Liu, R. and You, L. (2014), "Modeling of chloride diffusion in concrete immersed in CaCl2 and NaCl solutions with account of multi-phase reactions and ionic interactions", Constr. Build. Mater., 66(1), 1-9. https://doi.org/10.1016/j.conbuildmat.2014.05.026
- Sun, C., Chen, J., Zhu, J., Zhang, M. and Ye, J. (2013), "A new diffusion model of sulfate ions in concrete", Constr. Build. Mater., 39(1), 39-45. https://doi.org/10.1016/j.conbuildmat.2012.05.022
- Tixier, R. and Mobasher, B. (2003a), "Modeling of damage in cement-based materials subjected to external sulfate attack. i: formulation", J. Mater. Civ. Eng., 15(4), 305-313. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(305)
- Tixier, R. and Mobasher, B. (2003b), "Modeling of damage in cement-based materials subjected to external sulfate attack. ii: comparison with experiments", J. Mater. Civ. Eng., 15(4), 314-322. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:4(314)
- Tumidajski, P.J., Chan, G.W. and Philipose, K.E. (1995), "An effective diffusivity for sulfate transport into concrete", Cement Concrete Res., 25(6), 1159-1163. https://doi.org/10.1016/0008-8846(95)00108-O
- Zuo, X.B., Sun, W. and Yu, C. (2012a), "Numerical investigation on expansive volume strain in concrete subjected to sulfate attack", Constr. Build. Mater., 36(4), 404-410. https://doi.org/10.1016/j.conbuildmat.2012.05.020
- Zuo, X.B., Sun, W., Li, H. and Zhao, Y.K. (2012b), "Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments", Comput. Concrete, 10(1), 79-93. https://doi.org/10.12989/cac.2012.10.1.079
Cited by
- Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack vol.19, pp.1, 2015, https://doi.org/10.12989/cac.2017.19.1.019
- Modeling of time-varying stress in concrete under axial loading and sulfate attack vol.19, pp.2, 2015, https://doi.org/10.12989/cac.2017.19.2.143
- X-ray CT monitoring of macro void development in mortars exposed to sulfate attack vol.21, pp.4, 2015, https://doi.org/10.12989/cac.2018.21.4.367
- Effect of interfacial transition zone on the transport of sulfate ions in concrete vol.192, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2018.10.140