DOI QR코드

DOI QR Code

ROI 기반 실시간 이미지 정합 알고리즘 구현

An Implementation of the Real-time Image Stitching Algorithm Based on ROI

  • 투고 : 2015.09.09
  • 심사 : 2015.12.01
  • 발행 : 2015.12.31

초록

본 논문은 임베디드 환경에서 실시간으로 동작하기 위해 이미지에 ROI를 지정하고 PROSAC 알고리즘을 적용하여 구현한 파노라마 영상 정합을 제안한다. 기존의 방식은 SURF 알고리즘이나 SIFT 알고리즘과 같이 복잡한 연산과 많은 연산 데이터의 알고리즘을 화면 전체에 적용하여 탐색한다. 또한 outlier 제거 알고리즘으로 RANSAC을 적용하여 알고리즘이 가진 무작위성으로 추가적인 검증 시간을 필요로 한다. 본 논문은 파노라마 영상의 특성을 고려하여 ROI를 설정함으로써 불필요한 연산량을 줄이고 outlier 제거 알고리즘을 검증 시간을 줄인 PROSAC 알고리즘으로 채택하여 처리 속도를 개선하였다. 비교 실험은 ARM Cortex-A15가 내장된 ODROID-XU 환경에서 진행 하였다. 제안하는 방식은 기존의 방식보다 처리 시간이 약 54% 개선되었다.

This paper proposes a panoramic image stitching that operates in real time at the embedded environment by applying ROI and PROSAC algorithm. The conventional panoramic image stitching applies SURF or SIFT algorithm which contains complicated operations and a lots of data, at the overall image to detect feature points. Also it applies RANSAC algorithm to remove outliers, so that an additional verification time is required due to its randomness. In this paper, unnecessary data are eliminated by setting ROI based on the characteristics of panorama images, and PROSAC algorithm is applied for removing outliers to reduce verification time. The proposed method was implemented on the ORDROID-XU board with ARM Cortex-A15. The result shows an improvement of about 54% in the processing time compared to the conventional method.

키워드

참고문헌

  1. M. Brown and D. Lowe, "Automatic Panoramic Image Stitching using Invariant Features," International Journal of Computer Vision, vol. 74, no. 1, pp. 59-73, 2007. https://doi.org/10.1007/s11263-006-0002-3
  2. D. Lowe, "Distinctive image features from scale-invariant keypoints." International Journal of Computer Vision, 60(2):91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  3. H. Bay, T. Tuytelaars, and L.V. Gool, "SURF: Speeded Up Robust Features," 9th European Conf. Computer Vision, pages 404-417, 2006.
  4. Martin A and Robert C. Bolles, "Random Sample Consensus: A paradigm for Model fitting with Application to Image Anaysis and Automated Cartography," CACM, 24(6):381-395, 1981. https://doi.org/10.1145/358669.358692
  5. O. Chum and J. Matas, "Matching with PROSAC-ProgressiveSample Consensus," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 220-226, 2005.
  6. Jaehyun Im and Joonki Paik, "Feature-Based Panoramic Background Generation for Object Tracking in Dynamic Video," Journal of the Institude of Electronics Engineers of Korea SP vol.45 no.6, pp 641-649, 2008.
  7. Heekyeong Jeon, Jun-mo Jeong, Kwang-yeob Lee, "An implementation of the real-time panoramic image stitching using ORB and PROSAC," 12th international SoC Design Conference, 2015.