DOI QR코드

DOI QR Code

Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding

FeCo 자성 금속 중공형 섬유 고분자 복합재의 전자파 차폐 특성 연구

  • Choi, Jae Ryung (Functional Composites Department, Korea Institute of Materials Science (KIMS)) ;
  • Jung, Byung Mun (Functional Composites Department, Korea Institute of Materials Science (KIMS)) ;
  • Choi, U Hyeok (Functional Composites Department, Korea Institute of Materials Science (KIMS)) ;
  • Cho, Seung Chan (Functional Composites Department, Korea Institute of Materials Science (KIMS)) ;
  • Park, Ka Hyun (Functional Composites Department, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Won-jung (Functional Composites Department, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Sang-Kwan (Functional Composites Department, Korea Institute of Materials Science (KIMS)) ;
  • Lee, Sang Bok (Functional Composites Department, Korea Institute of Materials Science (KIMS))
  • Received : 2015.10.02
  • Accepted : 2015.12.18
  • Published : 2015.12.31

Abstract

Electromagnetic interference shielding composite with low density ($1.18g/cm^3$) was fabricated using electroless plated FeCo magnetic metal hollow fibers and ethylene propylene diene monomer (EPDM) polymer. Aspect ratio of the fibers were controlled and their hollow structure was obtained by heat treatment process. The FeCo hollow fibers were then mixed with EPDM to manufacture the composite. The higher aspect ratio of the magnetic metal hollow fibers resulted in high electromagnetic interference shielding effectiveness (30 dB) of the composite due to its low sheet resistance (30 ohm/sq). The enhanced electromagnetic interference shielding effectiveness was mainly attributed to the formation of conducting network over the percolation threshold by high aspect ratio of fibers as well as an increase of the reflection loss by impedance mismatch owing to low sheet resistance, absorption loss, and multiple internal reflections loss.

무전해 도금을 통해 제조한 FeCo 자성 금속 중공형 섬유와 EPDM 고분자를 이용하여 전자파 차폐 복합재를 제작하였다. 열처리 공정을 통하여 섬유의 종횡비를 제어하였으며 중공형 구조로 섬유를 제조한 후, 이를 EPDM 수지에 첨가하여 복합재를 제조하였다. 자성 금속 중공형 섬유의 종횡비가 클수록 낮은 표면 저항 특성과 우수한 전자파 차폐 성능을 나타내었다. 약 $100{\mu}m$ 길이의 자성 금속 중공형 섬유를 이용한 두께 $150{\mu}m$ 전자파 차폐 복합재의 경우 밀도 $1.18g/cm^3$, 약 30 ohm/sq의 표면 저항, 그리고 30 dB의 전자파 차폐 성능을 나타내었다. 이는 종횡비가 큰 섬유에 의한 퍼콜레이션 임계치 이상의 전도성 네트워크 형성과 더불어, 낮은 표면 저항에 기인한 임피던스 차이에 의한 반사 손실 증가, 흡수 손실, 그리고 다중 내부 반사 손실에 의하여 우수한 전자파 차폐 성능을 나타내는 것으로 판단된다.

Keywords

References

  1. Lee, S.E., Lee, M.Y., Lee, M.K., Jeong, E., and Lee, Y.S., "Effect of Fluorination of Carbon Nanotubes on Physico-chemical and EMI Shielding Properties of Polymer Composites," Polymer Korea, Vol. 39, 2014, pp. 114-121.
  2. Chen, C.S., Chen, W.R., Chen, S.C., and Chien, R.D., "Optimum Injection Molding Processing Condition on EMI Shielding Effectiveness of Stainless Steel Fiber Filled Polycarbonate Composite," International Communications in Heat and Mass Transfer, Vol. 35, 2008, pp. 744-749. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.006
  3. Hong, M.S., Bae, K.M., Lee, H.S., Park, S.J., An, K.H., Kang, S.J., and Kim, B.J., "Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites," Applied Chemistry for Engineering, Vol. 22, 2011, pp. 672-678.
  4. Al-Ghamdi, A.A. and El-tantawy, F., "New Electromagnetic Wave Shielding Effectiveness at Microwave Frequency of Polyvinyl Chloride Reinforced Graphite/Copper Nanoparticles," Composites: Part A, Vol. 41, 2010, pp. 1693-1701. https://doi.org/10.1016/j.compositesa.2010.08.006
  5. Lu, N.N., Wang, X.J., Meng, L.L., Ding, C., Liu, W.Q., Shi, H.L., Hu, X.S., and Wu, K., "Electromagnetic Interference Shielding Effectiveness of Magnesium Alloy-Fly Ash Composites," Journal of Alloys and Compounds, Vol. 650, 2015, pp. 871-877. https://doi.org/10.1016/j.jallcom.2015.08.019
  6. Park, K.Y., Lee, S.E., Kim, C.G., and Han, J.H., "Application of MWNT-added Glass Fabric/Epoxy Composites to Electromagnetic Wave Shielding Enclosures," Composite Structures, Vol. 81, 2007, pp. 401-406. https://doi.org/10.1016/j.compstruct.2006.08.029
  7. Al-Saleh, M.H., and Sundararaj, U., "Electromagnetic Interference Shielding Mechanisms of CNT/Polymer Composites," Carbon, Vol. 47, 2009, pp. 1738-1746. https://doi.org/10.1016/j.carbon.2009.02.030
  8. Rochon, P. and Gauthier, N., "Strong Shielding due to an Electromagnetically Thin Metal Sheet," American Journal of Physics, Vol. 58, 1990, pp. 276. https://doi.org/10.1119/1.16198
  9. Bigg, D.M., and Stutz, D.E., "Plastic Composites for Electromagnetic Interference Shielding Applications," Polymer Composites, Vol. 4, 1983, pp. 40-46. https://doi.org/10.1002/pc.750040107
  10. Stubhan, T., Krantz, J., Li, N., Guo, F., Litzov, I., Steidl, M., Richter, M., Matt, G.J., and Brabec, C.J., "High Fill Factor Polymer Solar Cells Comprising a Transparent, Low Temperature Solution Processed Doped Metal Oxide/Metal Nanowire Composite Electrode," Solar Energy Materials and Solar Cells, Vol. 107, 2012, pp. 248-251. https://doi.org/10.1016/j.solmat.2012.06.039
  11. Silva, A.B., Arjmand, M., Sundararaj, U., and Bretas, R.E.S., "Novel Composites of Copper Nanowire/PVDF with Superior Dielectric Properties," Polymer, Vol. 55, 2014, pp. 226-234. https://doi.org/10.1016/j.polymer.2013.11.045
  12. Al-Saleh, M.H., Gelves, G.A., and Sundararaj, U., "Copper Nanowire/Polystyrene Nanocomposites: Lower Percolation Threshold and Higher EMI Shielding," Composites: Part A, Vol. 42, 2011, pp. 92-97.
  13. Hu, M., Gao, J., Dong, Y., Li, K., Shan, G., Yang, S., and Li, R.K.Y., "Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding," Langmuir, Vol. 28, 2012, pp. 7101-7106. https://doi.org/10.1021/la300720y
  14. Uysal, M., Karslioglu, R., Alp, A., and Akbulut, H., "The Preparation of Core-Shell $Al_2O_3/Ni$ Composite Powders by Electroless Plating," Ceramics International, Vol. 39, 2013, pp. 5485-5493. https://doi.org/10.1016/j.ceramint.2012.12.060
  15. Dadvand, N., Jarjoura, G., and Kipouros, G.J., "Preparation and Characterization of Co-Fe-B Thin Films Produced by Electroless Deposition," Journal of Materials Science: Materials in Electronics, Vol. 19, 2008, pp. 51-59.
  16. Meng, X. and Shen, X., "Preparation of FeCo-, FeNi- and NiCo-Alloy Coated Cenosphere Composites by Heterogeneous Precipitation," Particuology, Vol. 10, 2012, pp. 334-338. https://doi.org/10.1016/j.partic.2011.02.012
  17. Wilson, L., Kalu, E.E., Martin, L., and McHenry, M.E., "Decoration of Carbon Nanotubes with Iron-Cobalt (FeCo) Alloy using Polymer-Stabilization and Electroless Deposition Techniques for Thermotherapy Applications" Journal of Materials Chemistry, Vol. 22, 2012, pp. 595-601. https://doi.org/10.1039/C1JM12600H
  18. Yu, Y.H., Ma, C.C.M., Teng, C.C., Huang, Y.L., Tien, H.W., Lee, S.H., and Wang, I., "Enhanced Thermal and Mechanical Properties of Epoxy Composites Filled with Silver Nanowires and Nanoparticles," Journal of the Taiwan Insititute of Chemical Engineers, Vol. 44, 2013, pp. 654-659. https://doi.org/10.1016/j.jtice.2013.01.001
  19. Qin, D.H., Cao, L., Sun, Q.Y., Huang, Y., and Li, H.L., "Fine Magnetic Properties Obtained in FeCo Alloy Nanowire Arrays," Chemical Physics Letters, Vol. 358, 2002, pp. 484-488. https://doi.org/10.1016/S0009-2614(02)00649-8
  20. Mall, S., Rodriguez, J., and Alexander, M.D., "Electromagnetic Interference and Electrical Conductivity Behavior of Carbon/Polycyanate Composite With Nickel $Nanostrands^{TM}$ Under Fatigue," Polymer Composites, Vol. 32, 2011, pp.483-490. https://doi.org/10.1002/pc.21067
  21. Lan, M., Cai, J., Zhang, D., Yuan, L., and Xu, Y., "Electromagnetic Shielding Effectiveness and Mechanical Property of Polymer-Matrix Composites Containing Metallized Conductive Porous Flake-Shaped Diatomite," Composites: Part B, Vol. 67, 2014, pp. 132-137. https://doi.org/10.1016/j.compositesb.2014.06.029
  22. Yim, Y.J., Seo, M.K., Kim, H.Y., and Park, S.J., "Eletromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWNCNT-reinforced Polypropylene Nanocomposites," Polymer Korea, Vol. 36, 2012, pp. 494-499. https://doi.org/10.7317/pk.2012.36.4.494

Cited by

  1. Tuning the Shape Anisotropy and Electromagnetic Screening Ability of Ultrahigh Magnetic Polymer and Surfactant-Capped FeCo Nanorods and Nanocubes in Soft Conducting Composites vol.8, pp.39, 2016, https://doi.org/10.1021/acsami.6b07464
  2. Magnetic thermal dissipations of FeCo hollow fibers filled in composite sheets under alternating magnetic field vol.415, 2017, https://doi.org/10.1016/j.apsusc.2016.10.170
  3. 분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구 vol.31, pp.3, 2018, https://doi.org/10.7234/composres.2018.31.3.111
  4. Review of electromagnetic interference shielding materials fabricated by iron ingredients vol.1, pp.5, 2019, https://doi.org/10.1039/c9na00108e
  5. 고효율 전자파 차폐를 위한 이종금속 코팅 탄소섬유 개발 vol.33, pp.4, 2015, https://doi.org/10.7234/composres.2020.33.4.191
  6. Feasibility Study on the Development of a Deployable Tactical EMP Tent for a Sustainable Military Facility vol.13, pp.1, 2021, https://doi.org/10.3390/su13010016
  7. Effects of Composition on the Electromagnetic Wave Shielding/Absorption and Corrosion in Zn-Ni Alloy Thin Film vol.60, pp.1, 2015, https://doi.org/10.3365/kjmm.2022.60.1.62