A Review of the Debates between Fixed-Resolution Slot and Flexible-Resource Models

시각작업기억 표상에 대한 고정해상도 슬롯 모형과 탄력적 자원 모형 사이의 쟁점에 대한 개관

  • Received : 2015.12.18
  • Accepted : 2015.12.29
  • Published : 2015.12.31

Abstract

The presnt study reviewed two contrasting models, fixed-resolution slot versus flexible-resource hypotheses, for the representational characteristics of visual working memory (VWM), and emphasized the necessary efforts for resolving their conflicting arguments. To accomplish this goal, the review explored the background hypotheses of the object-based versus parallel independent storage models, and introduced theoretical bases for their contrasting claims. The review then evaluated validity of empirical evidence provided in the studies to support each model, and attempted an understanding of their neurophysiological background. The study further emphasized the necessity of theoretical and methodological reconsiderations to resolve their conflict as well as the necessity of obtaining converging pieces of evidence to accomplish the resolution.

본 연구는 시각작업기억의 표상 특성에 대해 상반되는 주장을 펼치고 있는 고정해상도 슬롯 모형과 탄력적 자원 모형을 개관하고, 두 모형 간 상충을 해소하기 위한 노력이 필요함을 강조하였다. 이를 위해 고정해상도 슬롯과 탄력적 자원 모형을 태동시킨 객체 및 병렬 저장 가설을 살펴보고 두 모형의 상반되는 주장에 대한 이론적 근거를 소개하였다. 다음으로 두 모형을 지지한 구체적인 연구 사례를 통해 경험적 지지 증거의 객관성을 평가하고 관련 신경생리학적 모형에 대한 이해를 시도하였다. 마지막으로 두 모형 간의 상충을 해소하기 위한 이론적 그리고 방법론적 재고와 이를 달성하기 위한 수렴적 증거 확보의 필요성을 강조하였다.

Keywords

References

  1. 김대규, 현주석 (2015). 스트룹 간섭에 의한 시각작업기억의 왜곡 현상. 인지과학, 26(1), 27-51.
  2. 현주석 (2009). 기억 표상과 지각적 입력 간 비교 과정을 통해 본 시각작업기억 표상의 특성. 한국심리학회지: 인지 및 생물, 21(4), 265-282.
  3. 현주석 (2011). 행동적 연구 사례에 근거한 시각작업기억의 이해. 한국심리학회지: 인지 및 생물, 23(1), 45-90.
  4. Abrahamsen, A., & Bechtel, W. (2006). Phenomena and Mechanisms: PUtting the symbolic, connectionist, and dynamical systems debate in broader perspective. In R. Stainton (Ed.), Conteporary Debate in Cognitive Science. MA: MIT Press.
  5. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by information load and by number of objects. Psychological Science, 15, 106-111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x
  6. Anderson, J. R. (2007). How can human mind occur in the physical universe? Oxford: Oxford University Press.
  7. Averbach, E., & Coriel, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40, 309-328. https://doi.org/10.1002/j.1538-7305.1961.tb03987.x
  8. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622-628. https://doi.org/10.1111/j.1467-9280.2007.01949.x
  9. Bays, P. M. (2015). Spikes not slots: noise in neural populations limits working memory. Trends in Cognitive Science, 19(8), 431-438. https://doi.org/10.1016/j.tics.2015.06.004
  10. Bays, P. M., Catalao, R. F. G, & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 1-11.
  11. Bays, P. M., & Husain, M. (2008). Dynamic shift of limited working memory resources in human vision. Science, 321, 851-854. https://doi.org/10.1126/science.1158023
  12. Bengson, J. J., & Luck, S. J. (in press). Effects of strategy on visual working memory capacity. Psychonomic Bulletin & Review.
  13. Brady, T. F., & Alvarez, G. A. (2011). Hierarchical Encoding in Visual Working Memory. Psychological Science, 22(3), 384-392. https://doi.org/10.1177/0956797610397956
  14. Brady, T. F., & Alvarez, G. A. (2014). No evidence for a fixed object limit in working memory: spatial ensemble representations inflate estimates of working memory capacity for complex objects. Journal of Experimental Psychology: Learning, Memory & Cognition, 41(3), 921-929.
  15. Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5), 1-34.
  16. Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Procedings of the National Academy of Science, 105(38), 14325-14329. https://doi.org/10.1073/pnas.0803390105
  17. Brady, T. F., Konkle, T., Gill, J., Oliva, A., & Alvarez, G. A. (2013). Visual long-term memory has the same limit on fidelity as visual working memory. Psycholgical Science, 24(6), 981-990. doi: 10.1177/0956797612465439
  18. Chun, M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17(2), 177-184. https://doi.org/10.1016/j.conb.2007.03.005
  19. Coltheart, M. (1980a). Iconic memory and visible persistence. Perception and Psychophysics, 27, 183-228. https://doi.org/10.3758/BF03204258
  20. Coltheart, M. (1980b). The persistence of vision. Philosophical Transactions of the Royal Society of London, B(290), 57-69.
  21. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87-185. https://doi.org/10.1017/S0140525X01003922
  22. Donkin, C., Nosofsky, R., Gold, J. M., & Shiffrin, R. M. (2013). Discrete-slots models of visual working-memory response times. Psychological Review, 120(4), 873-902. https://doi.org/10.1037/a0034247
  23. Donkin, C., Tran, S. C., & Nosofsky, R. (2013). Landscaping analyses of the ROC predictions of discrete-slots and signal-detection models of visual working memory. Attention, Perception & Psychophysics, 76(7), 2103-2116. https://doi.org/10.3758/s13414-013-0561-7
  24. Engel, A. K., Kreiter, A. K., Konig, P., & Singer, W. (1991). Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proceedings of the National Academy of Science, 88, 6048-6052. https://doi.org/10.1073/pnas.88.14.6048
  25. Fine, M. S., & Minnery, B. S. (2009). Visual salience affects performance in a working memory task. The Journal of Neuroscience, 29(25), 8016-8021. https://doi.org/10.1523/JNEUROSCI.5503-08.2009
  26. Fougnie, D., Asplund, C. L., & Marois, R. (2010). What are the units of storage in visual working memory? Journal of Vision, 10(12), 1-11. https://doi.org/10.1167/10.12.1
  27. Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 1176-1194. https://doi.org/10.1162/089892903322598139
  28. Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 29, 388-403. https://doi.org/10.1037/0096-1523.29.2.388
  29. Huang, L. (2010). Visual working memory is better characterized as a distributed resource rather than discrete slots. Journal of Vision, 10(14). doi: 10.1167/10.14.8
  30. Hyun, J.-S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140-1160. doi: 10.1037/a0015019
  31. Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory & Cognition, 2, 683-702.
  32. Johnson, J. S., Spencer, J. P., Luck, S. J., & Shoner, G. (2009). A dynamic neural field model of visual working memory and change detection. Psychological Science, 20(5), 568-577. https://doi.org/10.1111/j.1467-9280.2009.02329.x
  33. Johnson, J., Simmering, V. R., & Buss, A. T. (2014). Beyond slots and resources: Grounding cognitive concepts in neural dynamics. Attention, Perception & Psychophysics, 76, 1630-1654. https://doi.org/10.3758/s13414-013-0596-9
  34. Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial patterns: a noisy examplar approach. Vision Research, 42, 2177-2192. https://doi.org/10.1016/S0042-6989(02)00118-9
  35. Kuo, B. C., Sokes, M. G., & Nobre, A. C. (2012). Attention modulates maintenance of representations in visuial short-term memory. Journal of Cognitive Neuroscience, 24(1), 51-60. https://doi.org/10.1162/jocn_a_00087
  36. Lin, P.-H., & Luck, S. J. (2009). The influence of similarity on visual working memory representations. Visual Cognition, 17(3), 356-372. https://doi.org/10.1080/13506280701766313
  37. Luck, S. J., & Hollingworth, A. (2008). Visual Memory: Oxford University Press.
  38. Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology ot individual differences. Trends in Cognitive Sciences, 17(8), 391-400. https://doi.org/10.1016/j.tics.2013.06.006
  39. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281. https://doi.org/10.1038/36846
  40. Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347-356. https://doi.org/10.1038/nn.3655
  41. Mack, A. (2003). Inattentional blindness: Looking without seeing. Current Directions in Psychological Science, 12(5), 180-184. doi: Doi 10.1111/1467-8721.01256
  42. Magnussen, S. (2000). Low-level memory processes in vision. Trends in Cognitive Science, 23(6), 247-251.
  43. Magnussen, S., Greenlee, M. W., & Thomas, J. P. (1996). Parallel processing in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 22, 202-212. https://doi.org/10.1037/0096-1523.22.1.202
  44. Matsukura, M., Cosman, J. D., Roper, Z. J., Vatterott, D. B., & Vecera, S. P. (2014). Location-specific effects of attention during visual short-term memory maintenance. Journal of Experimental Psychology: Human Perception and Performance, 40(3), 1103-1116. https://doi.org/10.1037/a0035685
  45. Matsukura, M., & Vecera, S. P. (2015). Selection of multiple cued items is possible during visual short-term memory maintenance. Attention, Perception & Psychophysics, 77, 1625-1646. https://doi.org/10.3758/s13414-015-0836-2
  46. Murray, A. M., Nobre, A. C., Clark, I. A., Cravo, A. M., & Stokes, M. G. (2013). Attention restores discrete items to visual short-term memory. Psychological Science, 24(4), 550-556. doi: 10.1177/0956797612457782
  47. Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the "strong-object" hypothesis. Perception and Psychophysics, 64, 1055-1067. https://doi.org/10.3758/BF03194756
  48. Orhan, A. E., & Ma, W. J. (2015). Neural population coding of multiple stimuli. The Journal of Neuroscience, 35(9), 3825-3841. https://doi.org/10.1523/JNEUROSCI.4097-14.2015
  49. Potter, M. C. (1976). Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 2, 509-522. https://doi.org/10.1037/0278-7393.2.5.509
  50. Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An assessment of fixed-capacity models of visual working memory. Procedings of the National Academy of Science, 105(16), 5975-5979. https://doi.org/10.1073/pnas.0711295105
  51. Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and involuntary attentional control of visual working memory. Perception and Psychophysics, 64, 754-763. https://doi.org/10.3758/BF03194742
  52. Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends Cogn Sci, 1(7), 261-267. doi: 10.1016/S1364-6613(97)01080-2
  53. Simons, Daniel J. (2000). Attentional capture and inattentional blindness. Trends in cognitive sciences, 4(4), 147-155. https://doi.org/10.1016/S1364-6613(00)01455-8
  54. Souza, A. S., Rerko, A., Lin, H.-Y., & Oberauer, K. (2014). Focused attention improves working memory: implications for flexible-resource and discrete-capacity models. Attention, Perception & Psychophysics, 76, 2080-2102. https://doi.org/10.3758/s13414-014-0687-2
  55. Souza, A. S., Rerko, A., & Oberauer, K. (2014). Unloading and reloading working memory: attending to one item frees capacity. Journal of Experimental Psychology: Human Perception & Performance, 40(3), 1237-1256. https://doi.org/10.1037/a0036331
  56. Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74, (Whole No. 498).
  57. Stirk, J. A., & Underwood, G. (2007). Low-level visual saliency does not predict change detection in natural scenes. Journal of Vision, 7(10:3), 1-10.
  58. Suchow, J. W., Fougnie, D., & Brady, T. F. (2014). Terms of the debate on the format and structure of visual memory. Attention, Perception & Psychophysics, 76(7), 2071-2079. https://doi.org/10.3758/s13414-014-0690-7
  59. Thiele, J. E., Pratte, M. S., & Jeffrey, N. R. (2011). On perfect working-memory performance with large number of items. Psychonomic Bulletin & Review, 18, 958-963. https://doi.org/10.3758/s13423-011-0108-7
  60. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751-754. https://doi.org/10.1038/nature02466
  61. Van den Berg, R., & Ma, W. J. (2014). "Plateau"-related summary stataistics are uninformative for comparing working memory models. Attention, Perception & Psychophysics, 76, 2117-2135. https://doi.org/10.3758/s13414-013-0618-7
  62. Van den Berg, R., Shin, H., Chou, W.-C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Science, 109(22), 8780-8785. https://doi.org/10.1073/pnas.1117465109
  63. van Moorselaar, D., Battistoni, E., Theeuwes, J., & Olivers, C. N. (2015). Rapid influences of cued visual memories on attentional guidance. Annals of the New York Academic of Science, 1339, 1-10. https://doi.org/10.1111/nyas.12574
  64. VanRullen, R., & Koch, C. (2003). Competition and selection during visual processing of natural scenes and objects. Journal of Vision, 3(1), 75-85.
  65. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748-751. https://doi.org/10.1038/nature02447
  66. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions and objects in visual working memory. J Exp Psychol Hum Percept Perform, 27(1), 92-114. https://doi.org/10.1037/0096-1523.27.1.92
  67. Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1436-1451. https://doi.org/10.1037/0096-1523.32.6.1436
  68. Wei, Z., Wang, X.-J., & Wang, D.-H. (2012). From distributed resources to limited slots in multiple-item working memory: A spiking network model with normalization. The Journal of Neuroscience, 32(33), 111228-111240.
  69. Wheeler, M., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48-64. https://doi.org/10.1037/0096-3445.131.1.48
  70. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120-1135.
  71. Woodman, G. F., & Vogel, E. K. (2005). Fractionating working memory: Consolidation and maintenance are independent processes. Psychological Science, 16(2), 106-113. https://doi.org/10.1111/j.0956-7976.2005.00790.x
  72. Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual organization influences visual working memory. Psychonomic Bulletin & Review, 10, 80-87. https://doi.org/10.3758/BF03196470
  73. Wolfe, J., Horowitz, T. S., & Michod, K. O. (2007). Is visual attention required for robust picture memory? Vision Research, 47(7), 955-964. https://doi.org/10.1016/j.visres.2006.11.025
  74. Xu, Y. (2002a). Encoding color and shape from different parts of an object in visual short-term memory. Perception and Psychophysics, 64, 1260-1280. https://doi.org/10.3758/BF03194770
  75. Xu, Y. (2002b). Limitations of object-based feature encoding in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 28, 458-468. https://doi.org/10.1037/0096-1523.28.2.458
  76. Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91-95. https://doi.org/10.1038/nature04262
  77. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233-235. https://doi.org/10.1038/nature06860
  78. Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in wisual working memory. Psychological Science, 20(4), 423-428. https://doi.org/10.1111/j.1467-9280.2009.02322.x
  79. Zhang, W., & Luck, S. J. (2003). Slot-like versus continuous representations in visual working memory. Journal of Vision, 3, 681a.