DOI QR코드

DOI QR Code

Research Status for Drought Tolerance in Maize

옥수수 한발 내성에 관한 연구 현황

  • Kim, Kyung-Hee (Department of Life Science, Dongguk University-Seoul) ;
  • Moon, Jun-Cheol (Agriculture and Life Sciences Research Institute, Kangwon National University) ;
  • Kim, Jae-Yoon (College of Life Science and Biotechnology, Korea University) ;
  • Kim, Hyo-Chul (Department of Life Science, Dongguk University-Seoul) ;
  • Shin, Seung-Ho (Department of Life Science, Dongguk University-Seoul) ;
  • Song, Ki-Tae (Department of Life Science, Dongguk University-Seoul) ;
  • Lee, Byung-Moo (Department of Life Science, Dongguk University-Seoul)
  • 김경희 (동국대학교 생명과학과) ;
  • 문준철 (강원대학교 농업생명과학연구원) ;
  • 김재윤 (고려대학교 생명과학대학 생명공학부) ;
  • 김효철 (동국대학교 생명과학과) ;
  • 신승호 (동국대학교 생명과학과) ;
  • 송기태 (동국대학교 생명과학과) ;
  • 이병무 (동국대학교 생명과학과)
  • Received : 2015.10.15
  • Accepted : 2015.11.11
  • Published : 2015.12.31

Abstract

Drought stress has detrimental effects on the seedling development, vegetative/ reproductive growth, photosynthesis, root proliferation, anthesis, anthesis-silking interval (ASI), pollination and grain yield in maize. Typically, two weeks before silking through pollination are an important time in maize life. Here we reviewed the effects of drought stress on growth, physiological/ molecular researches for drought tolerance, and breeding to genomics in maize. Drought stress during kernel development increases leaf dying and lodging, decreases grain filling period and grain yield. Physiological factors of drought stress/ effects are water content, water deficits, and water potential. Nowdays molecular marker assisted breeding method is becoming increasingly useful in the improvement of new germplasm with drought stress tolerance.

한발은 환경 스트레스에 미치는 자연재해로서, 장기간에 걸쳐 강수량 및 수분공급이 저하되면 수분이 결핍되어 작물이 정상적인 생리활동을 할 수 없고, 생육 또한 불량하여 수량감소에 큰 영향을 미친다. 모든 작물들이 한발의 영향을 크게 받지만 어느 생육 단계에서 한발 스트레스를 받느냐에 따라서 피해가 달라진다. 일반적으로 옥수수는 한발 스트레스를 받으면 유묘기 형성, 영양 생장, 뿌리 발달, 광합성, 개화기, ASI, 종실 형성, 수량 등에 심각한 영향을 미치게 된다. 특히 영양생장에서 생식생장으로 전환되는 단계에 한발 스트헤스를 받으면 수꽃 및 화분 방출이 늦어지고, 출사기 및 옥수수 수염 발생도 늦어져 ASI가 증가하여 수정이 불가능 하거나 수정이 되더라도 배 발생 억제 및 방해를 받아 수량 감소의 큰 원인이 된다. 이러한 한발에 대한 피해를 줄이기 위해서 1980년대부터 최근까지 마커와 표현형이 연관된 유전체를 바탕으로 다량의 분자적 데이터 분석을 통한 옥수수 한발 내성 품종 선별 및 육종에 대한 많은 연구들이 진행되고 있다. 또한 최근에는 수량 등 다양한 유전자들이 관여하고 환경 스트레스에 영향을 받는 양적형질 QTL에 관한 많은 연구들이 수행되고 있으며, genomics 분야에서 신기술인 MAS를 이용하여 목표유전자 이입 및 선발을 통해 또 다른 육종 선발 도구로 활용되고 있다. 뿐만 아니라 유전자 조작기술을 이용한 한발 내성 특징을 가진 옥수수를 개발하여 제품으로 생산 및 판매되고 있다. 과거 전통적인 육종 방법은 자식계통의 표현형 분석과 특별 조합을 통한 계통으로부터 데이터를 분석하여 품종을 육성하였으나, 현재는 모든 작물의 유전체 전체를 이용한 데이터 베이스와 분자 마커 기술을 한발 내성 육종에 활용하여 다양한 연구가 이루어지고 있다. 이러한 분자적 육종 기술의 발달은 우수한 연구 결과를 도출 및 확보할 수 있으며, 옥수수 한발 내성 신품종 개발에 있어서 새로운 육종 기술로 적용할 수 있을 것이다.

Keywords

References

  1. Abrecht, D. G. and P. S. Carberry. 1993. The influence of water deficit prior to tassel initiation on maize growth, development and yield. Field Crops Res. 31 : 55-59. https://doi.org/10.1016/0378-4290(93)90050-W
  2. Agrama, H. A. S. and M. E. Moussa. 1996. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica. 91 : 89-97. https://doi.org/10.1007/BF00035278
  3. Almeida, G. D., D. Makumbi, C. Magorokosho, S. Nair, A. Borem, J. Ribaut, M. Banziger, B. M. Prasanna, J. Crossa, and R. Rabu. 2013. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor. Appl. Genet. 126 : 583-600. https://doi.org/10.1007/s00122-012-2003-7
  4. Aslam, M., I. A. Khan, M. Saleem, and Z. Ali. 2006. Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pak. J. Bot. 38(5) : 1571-1579.
  5. Aslam, M., M. S. I. Zamir, I. Afzal, M. Yaseen, M. Mubeen, and A. Shoaib. 2013. Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetari Agronomic in Moldova. Vol. XLVI, No.2 (154) : 99-114.
  6. Banziger, M., G. O. Edmeades, D. Beck, and M. Bellon. 2000. Breeding for drought and nitrogen stress tolerance in maize. From theory to practice. CIMMYT, Mexico, pp. 39-42.
  7. Barnaby, J. Y., M. Kim, G. Bauchan, J. Bubce, V. Reddy, and R. C. Sicher. 2013. Drought responses of foliar metabolites in three maize hybrids differing in water stress tolerance. PLos ONE 8(10) : e77145. https://doi.org/10.1371/journal.pone.0077145
  8. Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 48 : 1649-1664. https://doi.org/10.2135/cropsci2008.03.0131
  9. Bernardo, R. and J. Yu. 2007. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47 : 1082-1090. https://doi.org/10.2135/cropsci2006.11.0690
  10. Blum, A. 1988. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica 100 : 77-83.
  11. Bolanos, J. and G. O. Edmeades. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize. 1. Responses in grain-yield, biomass, and radiation utilization. Field Crops Res. 31 : 233-252. https://doi.org/10.1016/0378-4290(93)90064-T
  12. Bolanos, J. and G. O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48(1) : 65-80. https://doi.org/10.1016/0378-4290(96)00036-6
  13. Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32 : 314-331.
  14. Boyer, J. S. and M. E. Westgate. 2004. Grain yields with limited water. J. Exp. Bot. 55 : 2385-2394. https://doi.org/10.1093/jxb/erh219
  15. Burton, A. L., J. M. Jahnson, J. M. Foerster, C. N. Hirsch, C. R. Buell, M. T. Hanlon, S. M. Kaeppler, K. M. Brown, and J. P. Lynch. 2014. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor. Appl. Genet. 127 : 2293-2311. https://doi.org/10.1007/s00122-014-2353-4
  16. Cakir, R. 2004. Effect of water at different development stages on vegetative and reproductive growth of corn. Field Crops Research. 89 : 1-16. https://doi.org/10.1016/j.fcr.2004.01.005
  17. Cattivelli, L., P. Baldi, C. Crosatti, N. Di Fonzo, P. Faccioli, m. Grossi, A. M. Mastrangelo, N. Pecchioni, and A. M. Stance. 2002. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol. 48 : 649-665. https://doi.org/10.1023/A:1014824404623
  18. Cattivelli, L., F. Rizza, F.-W. Badeck, E. Mazzucotelli, A. M. Mastrangelo, E. Francia, C. Mare, A. Tondelli, and A. M. Stanca. 2008. Drought tolerance improvement in crop plants:An integrated view from breeding to genomics. Field Crops Research. 105 : 1-14. https://doi.org/10.1016/j.fcr.2007.07.004
  19. Chen, J., W. Xu, J. J. Burke, and Z. Xin. 2010. Role of phosphatidic acid in high temperature tolerance in maize. Crop. Sci. 50 : 2506-2515. https://doi.org/10.2135/cropsci2009.12.0716
  20. Chen, M.-H., P. Kaur, B. Dien, F. Below, M. L. Vincent, and V. Singh. 2013. Use of tropical maize for bioethanol production. World J Microbiol Biotehnol. 29(8) : 1509-1515. https://doi.org/10.1007/s11274-013-1317-1
  21. Chugh, V., N. Kaur, and A. K. Gupta. 2011. Evaluation of oxidative stress tolerance in maize (Zea maize L.) seedling response to drought. Indian J. Biochem. Biophys. 48 : 47-53.
  22. Cushman, J. C. 2001. Crasulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol. 127 : 1439-1448. https://doi.org/10.1104/pp.010818
  23. Eathington, S. R., T. M. Crosbie, M. D. Edwards, R. S. Reiter, and J. K. Bull. 2007. Molecular markers in a commercial breeding program. Crop Sci. 47(S3) : S154-S163.
  24. Edmeades, G. O., J. Bolanos, A. Elings, J.-M. Ribaut, M. Banziger, and M. E. Westgate. 2000. The role and regulation of the anthesis-silking interval in maize. In: Westgate, M. E., K. J. Boote (Eds.), Physiology and modelling kernel set in maize. CSSA special publication No. 29. CSSA, Madison, WI, pp. 43-73.
  25. Gemenet, D. C., F. N. Wachira, R. S. Pathak, and S. W. Munyiri. 2010. Identification of molecular markers linked to drought tolerance using bulked segregant analysis in Kenyan maize (Zea mays L.) landraces. J. Anim. Plant Sci. 9(1) : 1122-1134.
  26. Gulli, M., E. Salvatori, L. Fusaro, C. Pellacani, F. Manes, and N. Marmiroli. 2015. Comparison of drought stress response and gene expression between a GM maize variety and a Near-Isogenic Non-GM variety. Plos ONE 10(2) : e0117073. https://doi.org/10.1371/journal.pone.0117073
  27. Hao, Z. F., X. H. Li, C. X. Xie, M. S. Li, D. G. Zhang, L. Bai, and S. H. Zhang. 2008. Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann. Appl. Biol. 153 : 73-83. https://doi.org/10.1111/j.1744-7348.2008.00239.x
  28. Hao, Z., X. Liu, X. Li, C. Xie, M. Li, D. Zhang, S. Zhang, and Y. Xu. 2009. Identification of quantitative trait loci for drought tolerance at seedling stage by screening a large number of introgression lines in maize. Plant Breeeding. 128 : 337-341. https://doi.org/10.1111/j.1439-0523.2009.01642.x
  29. Hao, Z., X. Li, X. Liu, C. Xie, M. Li, D. Zhang, and S. Zhang. 2010. Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica. 174 : 165-177. https://doi.org/10.1007/s10681-009-0091-5
  30. Heiniger, R. W. 2000. Irrigation and drought management. Crop Science Department. Available from: http://www.ces.ncsu.edu/ plymouth/cropsci/cornguide/Chapter4.html
  31. Helentjaris, T., G. King, M. Slocum, C. Siedenstrang, and S. Wegman. 1985. Restriction fragment length polymorphisms as probes for plant diversity and as tools for applied plant breeding. Plant Mol. Biol. 5 : 109-118. https://doi.org/10.1007/BF00020093
  32. Herrero, M. P. and R. R. Johnson. 1981. Drought stress and its effects on maize reproductive systems. Crop Sci. 21 (1) : 105-110. https://doi.org/10.2135/cropsci1981.0011183X002100010029x
  33. Hoad, S. P., G. Russell, M. E. Lucas, and I. J. Bingham. 2001. The management of wheat, barley and oat root systems. Adv. Agron. 74 : 193-246. https://doi.org/10.1016/S0065-2113(01)74034-5
  34. ISAAA. http://www.isaaa.org.
  35. Jones, 1999. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ. 22 : 1043-1055. https://doi.org/10.1046/j.1365-3040.1999.00468.x
  36. Jones, H. G. 2007. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58 : 119-130.
  37. Kerstiens, G. 1996. Cuticular water permeability and its physiological significance. J. Exp. Bot. 47 : 1813-1832. https://doi.org/10.1093/jxb/47.12.1813
  38. Khodarahmpour, Z. 2011. Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. Afr. J. Biotechnol. 10(79) : 18222-18227.
  39. Kim, J. Y., J.-C. Moon, S.-B. Beak, Y.-U. Kwon, K. Song, and B.-M. Lee. 2014. Genetic improvement of maize by marker-assisted breeding. Korean J. Crop Sci. 59 (2) : 109-127. https://doi.org/10.7740/kjcs.2014.59.2.109
  40. Lande, R. and R. Thompson. 1990. Efficiency of marker assisted selection in the improvement of quantitative traits. Genetics 124(3) : 743-756.
  41. Landi, P., S. Giuliani, S. Salvi, M. Ferri, R. Tuberosa, and M. C. Sanguineti. 2010. Characterization of root-yield-l.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J. Exp. Bot. 61(13) : 3553-3562. https://doi.org/10.1093/jxb/erq192
  42. Langridge, P. and M. P. Reynolds. 2015. Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology. 32 : 130-135. https://doi.org/10.1016/j.copbio.2014.11.027
  43. Lawlor, D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25 : 275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
  44. Lebreton, C., V. Lazic-jancic, A. Steed, S. Pekic, and S. A. Quarrie. 1995. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot. 46(7) : 853-865. https://doi.org/10.1093/jxb/46.7.853
  45. Lee, E. and W. F. Tracy. 2009. Modern Maize Breeding. In: Bennetzen and S. Hake (eds). Handbook of Maize; Vol. 2. Genetics and Genomics. Springer Science, New York, NY. pp. 141-162.
  46. Li, L., V. Staden, and A. K. Jager. 1998. Effects of plant growth regulators on the antioxidant system in seedling of two maize cultivars subjected to water stress. Plant Growth Regul. 25(2) : 81-87. https://doi.org/10.1023/A:1010774725695
  47. Liu, Y., C. Subhash, J. Yan, C. Song, J. Zhao, and J. Li. 2011. Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Environ. Exp. Bot. 71 : 158-165. https://doi.org/10.1016/j.envexpbot.2010.11.010
  48. Lu, Y., Z. Hao, C. Xie, J. Crossa, J.-L. Araus, S. Gao, B. S. Vivek, C. Magorokosho, S. Mugo, D. Makumbi, S. Taba, G. Pan, X. Li, T. Rong, S. Zhang, and Y. Xu. 2011. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res. 124 : 37-45. https://doi.org/10.1016/j.fcr.2011.06.003
  49. Mano, Y., M. Muraki, M. Fujimori, T. Takamizo, and B. Kindiger. 2005. Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica. 142 : 33-42. https://doi.org/10.1007/s10681-005-0449-2
  50. Messmer, R., Y. Fracheboud, M. Banziger, P. Stamp, and J. Ribaut. 2011. Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crops Res. 124 : 93-103. https://doi.org/10.1016/j.fcr.2011.06.010
  51. Metsker, M. L. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11(1) : 31-46. https://doi.org/10.1038/nrg2626
  52. Morizet, T., M. Pllucsck, and D. Togola. 1983. Drought tolerance in four varieties. Field Crops Abst. 39 : 306, 1986.
  53. NeSmith, D. S. and J. T. Ritchie. 1992. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crops Res. 28 (3) : 251-256. https://doi.org/10.1016/0378-4290(92)90044-A
  54. Obeng-Bio, E., M. Bonsu, K. Obeng-Antwi, and R. Akromah. 2011. Establishing the basis for drought tolerance in maize (zea mays L.) using some secondary traits in the field. Afr. J. Plant Sci. 5(12) : 702-709.
  55. Opitz, N., A. Paschold, C. Marcon, W. A. Malik, C. Lanz, H.-P. Piepho, and F. Hocholdinger. 2014. Transcriptomic comoplexity in young maize primary roots in response to low water potentials. BMC genomics. 15 : 741. https://doi.org/10.1186/1471-2164-15-741
  56. Paterson, A. H., E. S. Lander, J. D. Hewitt, S. Peterson, S. Lincoln, and S. E. Tanksley. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335 : 721-726. https://doi.org/10.1038/335721a0
  57. Pelleschi, S., S. Guy, J. Kim, C. Pointe, A. Mahe, L. Barthes, A. Leonardi, and J. Prioul. 1999. Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress. Plant Mol. Biol. 39 : 373-380. https://doi.org/10.1023/A:1006116310463
  58. Poroyko, V., W. Spollen, L. Hejlek, A. Hernandez, M. LeNoble, G. Davis, H. Hguyen, G. Springer, R. Sharp, and H. Bohnert. 2007. Comparing regional transcript profiles from maize primary roots under well-watered and low water potential conditions. J. Exp. Bot. 58(2) : 279-289. https://doi.org/10.1093/jxb/erl119
  59. Rajcan, I. and M. Tollenaar. 1999. Source-sink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during the grain-filling period. Field Crop Res. 90 : 245-253.
  60. Ramadan, H. A., S. N. Al-Niemi, and T. T. Handan. 1985. Water stress, soil type and phosphorus effects on corn and soybean, I. Effect on growth. Iraqi. J. Agri. Sci. Sanco 3 : 137-144.
  61. Ramanjulu, S. and D. Bartels. 2002. Drought- and desiccation-induced modulation of gene espression in plants. Plant Cell Environ. 25 : 141-151. https://doi.org/10.1046/j.0016-8025.2001.00764.x
  62. Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161 : 1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
  63. Rhoads, F. M. and J. M. Bennett. 1990. Corn. Chapter 19 in Irrigation of Agricultural Crops. pp. 569-596. ASA-CSSA-SSSA, Mono No. 30, B.A. Stewart and D.R. Nielsen (Eds.).
  64. Ribaut, J. M., D. A. Hoisington, J. A. Deutsch, C. Jiang, and D. Gonzalez-de-Leon. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92 : 905-914. https://doi.org/10.1007/BF00221905
  65. Richards, R. A. 2006. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric. Water Manage. 80 : 197-211. https://doi.org/10.1016/j.agwat.2005.07.013
  66. Ruta, N., M. Liedgens, Y. Fracheboud, P. Stemp, and Z. Hund. 2010. QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor. Appl. Genet. 120 : 621-631. https://doi.org/10.1007/s00122-009-1180-5
  67. Sanguineti, M. C., R. Tuberosa, P. Landi, S. Salvi, M. Maccaferri, E. Casarini, and S. Conti. 1999. QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J. Exp. Bot. 50(337) : 1289-1297. https://doi.org/10.1093/jxb/50.337.1289
  68. Sari-Gorla, M., P. Krajewski, N. Di Fonzo, M. Villa, and C. Frova. 1999. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Appl. Genet. 99 : 289-295. https://doi.org/10.1007/s001220051234
  69. Saruhan, N., A. Saglam, and A. Kadioglu. 2012. Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta. Physiol. Plant. 34 : 97-106. https://doi.org/10.1007/s11738-011-0808-7
  70. Schussler, J. R. and M. E. Westgate. 1991. Maize kernel set at low water potential: II. Sensitivity to reduced assimilates at pollination. Crop Sci. 31 : 1196-1203. https://doi.org/10.2135/cropsci1991.0011183X003100050024x
  71. Seo, Y, K. Park, E. Chang, S. Ryu, J. Park, and K. Kim. 2014. Effect of salicylic acid and abscisic acid on drought stress of waxy corn. Korean J. Crop Sci. 59(1) : 54-58. https://doi.org/10.7740/kjcs.2014.59.1.054
  72. Serraj, R. and T. R. Sinclair. 2002. Osmolyte accumulation: can it really increase crop yield under drought conditions? Plant Cell Environ. 25 : 333-341. https://doi.org/10.1046/j.1365-3040.2002.00754.x
  73. Sharp, R. E., V. Poroyko, L. G. Hejlek, W. G. Spollen, G. K. Springer, H. J. Bohnet, and T. Nguyen. 2004. Root growth maintenance during water deficits: physiology to functional genomics. J. Exp. Bot. 55 : 2343-2351. https://doi.org/10.1093/jxb/erh276
  74. Shaw, R. H. 1988. Climate requirement. Chapter 10 in corn and corn improvement. Third Edition. Pp. 609-638. ASA-CSSASSSA, Mono No. 18, G.F. Sprague and J.W. Dudley (Eds.). 986 pp.
  75. Slafer, G. A., J. L. Araus, C. Royo, and L. F. G. Del Moral. 2005. Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann. Appl, Biol. 146 : 61-70. https://doi.org/10.1111/j.1744-7348.2005.04048.x
  76. Song, K., K.-H. Kim, H. C. Kim, J.-C. Moon, J. Y. Kim, S.-B. Baek, Y.-U. Kwon, and B.-M. Lee. 2015. Evaluation of drought tolerance in maize seedling using leaf rolling. Korean J. Crop Sci. 60(1) : 8-16. https://doi.org/10.7740/kjcs.2014.60.1.008
  77. Spollen, W., W. Tao, B. Valliyodan, K. Chen, L. Hejlek, J.-J. Kim, M. LeNoble, J. Zhu, H. Bohnert, D. Henderson, D. P. Schachtman, G. E. Davis, G. K. Springer, R. E. Sharp, and H. T. Nguyen. 2008. Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biol. 8(1) : 32. https://doi.org/10.1186/1471-2229-8-32
  78. Stuber, C. W., M. D. Edwards, and J. F. Wendel. 1987. Molecular marker-facilitated investigations of quantitative trait loci in maize. II. factors influencing yield and its component traits. Crop Sci. 27(4) : 639-648. https://doi.org/10.2135/cropsci1987.0011183X002700040006x
  79. Tuberosa, R., M. C. Sanguineti, P. Landi, S. Salvi, E. Casarini, and S. Conti. 1998. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of droughtstressed maize (Zea mays L.). Theor. Appl. Genet. 97 : 744-755. https://doi.org/10.1007/s001220050951
  80. Tuberosa, R., M. C. Sanguineti, P. Landi, M. M. Giuliani, S. Salvi, and S. Conti. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Biol. 48 : 697-712. https://doi.org/10.1023/A:1014897607670
  81. Tyerman, S. D., C. M. Niemietz, and H. Bramley. 2002. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ. 25 : 173-194. https://doi.org/10.1046/j.0016-8025.2001.00791.x
  82. Udomprasert, N., J. Kijjanon, K. Chusri-iam, and A. Machuay. 2005. Effects of water deficit at tasseling on photosynthesis, development, and yield of corn. Kasetsart J. (Nat. Sci.) 39 : 546-551.
  83. Vargas, M., F. A. Eeuwijk, J. Crossa, and J. Ribaut. 2006. Mapping QTLs and QTL$\times$environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor. Appl. Genet. 112 : 1009-1023. https://doi.org/10.1007/s00122-005-0204-z
  84. Vaughan, M. M., S. Christensen, E. A. Schmelz, A. Huffaker, H. J. McAuslane, H. T. Alborn, M. Romero, L. H. Allen, and P. E. A. Teal. 2015. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ. doi: 10.1111/pce.12482.
  85. Vohra, M., J. Manwar, R. Manmode, S. Padgilwar, and S. Patil. 2014. Bioethanol production: Feedstock and current technologies. J. of Environ. Chem. Eng. 2(1) : 573-584. https://doi.org/10.1016/j.jece.2013.10.013
  86. Voothuluru, P., H. J. Thompson, S. A. Flint-Garcia, and R. E. Sharp. 2013. Genetic variability of oxidase oxalate activity and elongation in water-stressed primary roots of diverse maize and rice lines. Plant Signal. Behav. 8(3) : e23454. https://doi.org/10.4161/psb.23454
  87. Walter, A. and U. Shurr. 2005. Dynamics of leaf and root growth: endogenous control versus environmental impact. Ann. Not. 95 : 891-900.
  88. Weerathaworn, P., A. Soldati, and P. Stamp. 1992. Anatomy of seedling roots of tropical maize (Zea mays L.) cultivars at low water supply. J. Exp. Bot. 43 : 1015-1021. https://doi.org/10.1093/jxb/43.8.1015
  89. Welcker, C., B. Boussuge, C. Bencivenni, J. Ribaut, and F. Tardieu. 2007. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J. Exp. Bot. 58(2) : 339-349. https://doi.org/10.1093/jxb/erl227
  90. Welcker, C., W. Sadok, G. Dignat, M. Renault, S. Salvi, A. Charcosset, and F. Tardieu. 2011. A common genetic determinism for sensitivities to soil water deficit and evaporative demand : meta-analysis of quantitative trait loci and introgression lines of maize. Plant physiol. 157 : 718-729. https://doi.org/10.1104/pp.111.176479
  91. Westgate, M. E. and J. S. Boyer. 1985. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta 164 : 540-549. https://doi.org/10.1007/BF00395973
  92. Westgate, M. E. and D. L. T. Grant. 1989. Water deficits and reproduction in maize: Response of the reproductive tissue to water deficits at anthesis and mild grainfill. Plant Physiol. 91 : 862-867. https://doi.org/10.1104/pp.91.3.862
  93. Xiao, Y.-N., X.-H. Li, S.-H. Zhang, X.-D. Wang, M.-S. Li, and Y.-L. Zheng. 2004. Identification of quantitative trait loci (QTLs) for flowering time using SSR marker in maize under water stress. Korean J. Genetics. 26(4) : 405-413.
  94. Xiao, Y. N., X. H. Li, M. L. George, M. S. Li, S. H. Zhang, and Y. L. Zheng. 2005. Quantitative trait locus analysis of drought tolerance and yield in maize in china. Plant Mol. Biol. Report. 23 : 155-165. https://doi.org/10.1007/BF02772706
  95. Xue, Y., L. M. L. Warburton, M. Sawkins, X. Zhang, T. Setter, Y. Xu, P. Grudloyma, J. Gethi, J.-M. Ribaut, W. Li, X. Zhang, Y. Zheng, and J. Yan. 2013. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor. Appl. Gene. 126 : 2587-2596. https://doi.org/10.1007/s00122-013-2158-x
  96. Zamaninejad, M., S. K. Khorasani, M. J. Moeini, and A. R. Heidarian. 2013. Effect of salicylic acid on morphological characteristics, yield and yield components of Corn (Zea mays L.) under drought condition. Euro. J. Exp. Bio. 3(2) : 153-161.
  97. Zheng, J., J. Zhao, Y. Tao, J. Wang, Y. Liu, J. Fu, Y. Jin, P. Gao, J. Zhang, Y. Bai, and G. Wang. 2004. Isolation and analysis of water stress-induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol. Biol. 55(6) : 807-823. https://doi.org/10.1007/s11103-005-1969-9
  98. Ziyomo, C. and R. Bernardo. 2013. Drought tolerance in maize: Indirect selection through secondary traits versus genomewide selection. Crop Sci. 53 : 1269-1275. https://doi.org/10.2135/cropsci2012.11.0651

Cited by

  1. Growth and Yield Responses of Corn (Zea mays L.) as Affected by Growth Period and Irrigation Intensity vol.50, pp.6, 2015, https://doi.org/10.7745/kjssf.2017.50.6.674