DOI QR코드

DOI QR Code

Emergence of CTX-M-15 Extended Spectrum β-lactamase and ArmA-Producing Enterobacter cloacae

CTX-M-15형 Extended Spectrum β-lactamase와 ArmA 동시 생성 Enterobacter cloacae의 출현

  • Sung, Ji-Youn (Dept. of Biomedical Laboratory Sciencence, Far East University)
  • 성지연 (극동대학교 임상병리학과)
  • Received : 2015.10.25
  • Accepted : 2015.12.20
  • Published : 2015.12.28

Abstract

We investigated the prevalence of extended spectrum ${\beta}$-lactamase (ESBL) genes and 16S rRNA methyltransferase genes to study antimicrobial resistance mechanisms of Enterobacter cloacae strains isolated from a university hospital in the Chungcheong province of Korea. Eight of the bacteria strains involved in this study contained CTX-M-15 type ESBL. Among 8 strains harboring the ESBL gene, 3 strains also harbored armA gene. The three isolates showed resistance to antimicrobial agents belonged to third cephalosporin, aminoglycoside, and fluoroquinolones. Furthermore, interspecies plasmid transfer of the antimicrobial resistant genes may induced horizontal spreading of the genes and emergence of multidrug resistant bacteria. Therefore, surveillance for existence of antimicrobial resistance determinants is important to prevent distribution of antimicrobial resistant strains.

본 연구에서는 세균의 항균제 내성기전을 연구하기 위해 일개의 대학병원에서 분리된 Enterobacter cloacae를 대상으로 extended spectrum ${\beta}$-lactamase (ESBL) 및 16S rRNA methyltransferase 유전자를 검출하고 항균제 감수성 양상을 조사하였다. 대상균주 중 총 8 균주가 CTX-M-15형 ESBL을 생성하는 것으로 확인되었으며 이 균주들 중 3 균주는 16S rRNA methyltransferase의 한 종류인 armA 유전자도 동시에 가지고 있는 것으로 나타났다. CTX-M-15형 ESBL 유전자와 armA 유전자를 동시에 가지고 있는 E. cloacae는 3세대 cephalosporin 계열 및 aminoglycoside 계열의 항균제 뿐 만 아니라 fluoroquinolone 계열의 항균제에도 내성을 보였다. 더구나 이러한 항균제 내성 유전자들은 플라스미드를 통해 다른 세균으로 전달 될 수 있어 다제내성 세균의 출현 및 확산을 촉진 할 수 있다. 따라서 E. cloacae를 대상으로 지속적인 항균제 내성 유전자를 모니터링 하는 것은 항균제 내성 확산방지를 위해 중요할 것으로 사료된다.

Keywords

References

  1. S. Abbott, Manual of Clinical Microbiology. p.475-482, American Society for Microbiology, 1999.
  2. D. L. Paterson, and R. A. Bonomo, Extended-spectrum ${\beta}$-lactamases: a clinical update. Clin Microbiol Rev, Vol. 18, pp.657-686, 2005. https://doi.org/10.1128/CMR.18.4.657-686.2005
  3. J. P. Folster, R. Rickert, E. J. Barzilay, and J. M. Whichard, Identification of the Aminoglycoside Resistance Determinants armA and rmtC among Non-Typhi Salmonella Isolates from Humans in the United States. Antimicrob Agents Chemother, Vol. 53, pp.4563-4564, 2009. https://doi.org/10.1128/AAC.00656-09
  4. L. Ma, C. J. Lin, J. H. Chen, C. P. Fung, and F. Y. Chang, Widespread Dissemination of Aminoglycoside Resistance Genes armA and rmtB in Klebsiella pneumoniae Isolates in Taiwan Producing CTX-M-Type Extended-Spectrum ${\beta}$-Lactamases. Antimicrob Agents Chemother, Vol. 53, pp.104- 111, 2009. https://doi.org/10.1128/AAC.00852-08
  5. CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement. CLSI document M100-S20. p.52-53, Clinical and Laboratory Standards Institute, 2010.
  6. L. M. Li, S. J. Jan, I. K. Bae, G. Park, Y. S. Kim, and J. H. Shin, Frequency of Extended-spectrum ${\beta}$-lactamase (ESBL) and AmpC ${\beta}$-lactamase Genes in Escherichia coli and Klebsiella pneumoniae over a Three-year Period in a University Hospital in Korea. Korean J Lab Med, Vol. 30 pp.616-623, 2010. https://doi.org/10.3343/kjlm.2010.30.6.616
  7. P. Bogaerts, M. Galimand, C. Bauraing, A. Deplano, R. Vanhoof, and R. De Mendonca, Emergence of ArmA and RmtB aminoglycoside resistance 16S rRNA methylases in Belgium. J Antimicrob Chemother, Vol. 59, pp.459-464, 2007. https://doi.org/10.1093/jac/dkl527
  8. D. M. Livermore. ${\beta}$-Lactamases in laboratory and clinical? resistance. Clin Microbioal Rev, Vol. 8, pp.557-584, 1995.
  9. S. G. Hong, S. J. Kim, S. H. Jeong, C. H. Chang, S. R. Cho, and J. Y. Ahn, Prevalence and diversity of extened-spectrum ${\beta}$-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J Clin Microbiol, Vol. 6, pp149-155, 2003.
  10. J. D. Pitout, and K. B. Laupland. Extended-spectrum beta-lactamase producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis, Vol. 8 pp.159-166, 2008. https://doi.org/10.1016/S1473-3099(08)70041-0
  11. K. S. Ko, M. Y. Lee, J. H. Song, H. Lee, D. S. Jung, and S. I. Jung, Prevalence and characterization of extended-spectrum ${\beta}$-lactamase-producing Enterobacteriaceae isolated in Korean hospitals. Diagn Microbiol Infect Dis, Vol. 61, pp.453-459, 2008. https://doi.org/10.1016/j.diagmicrobio.2008.03.005
  12. Y. Park, H. K. Kang, I. K. Bae, J. Kim, J. S. Kim, and Y. Uh. Prevalence of the extended-spectrum ${\beta}$-lactamase and qnr genes in clinical isolates of Escherichia coli. Korean J Lab Med, Vol. 29, pp.218-223, 2009. https://doi.org/10.3343/kjlm.2009.29.3.218
  13. W. H. Sheng, R. E. Badal, P. R. Hsueh, and SMART Program. Distribution of Extended-Spectrum ${\beta}$-Lactamases, AmpC-Lactamases, and Carbapenemases among Enterobacteriaceae Isolates Causing Intra-Abdominal Infections in the Asia-Pacific Region: Results of the Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chemother, Vol. 57, No. 7, pp. 2981-2988, 2013. https://doi.org/10.1128/AAC.00971-12
  14. H. Lee, E. M. Koh, C. K. Kim, J. H. Yum, K. Lee, and Y. Chong, Molecular and Phenotypic Characteristics of 16S rRNA Methylase-producing Gram-negative Bacilli. Korean J Clin Microbiol, Vol. 13, No. 1, pp.19-26, 2010. https://doi.org/10.5145/KJCM.2010.13.1.19
  15. M. Golebiewski, Kern-Zdanowicz, M. Zienkiewicz, M. Adamczyk, J. Zylinska, A. Baraniak, M. Gniadkowski, J. Bardowski, and P. Ceglowski. Complete nucleotide sequence of the pCTX-M3 plasmid and its involvement in spread of the extended-spectrum beta-lactamase gene $bla_{CTX-M-3}$. Antimicrob Agents Chemother, Vol. 51, No. 11, pp.3789-3795, 2007. https://doi.org/10.1128/AAC.00457-07
  16. J. J. Yan, J. J. Wu, W. C. Ko, S. H. Tsai, C. L. Chuang, and H. M. Wu, Plasmidmediated 16S rRNA methylase conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J Antimicrobial Chemother, Vol. 54 pp.1007-1012, 2004. https://doi.org/10.1093/jac/dkh455
  17. M. H. Kim, J. Y. Sung, J. W. Park, G. C. Kwon, and S. H. Koo. Coproduction of qnrB and armA from Extended-Spectrum ${\beta}$-lactamase-producing Klebsiella pneumoniae. Korean J Lab Med, Vol. 27, pp.428-436, 2007. https://doi.org/10.3343/kjlm.2007.27.6.428