DOI QR코드

DOI QR Code

A Study on Efficient Vehicle Tracking System using Dynamic Programming Method

동적계획법을 이용한 효율적인 차량 추적 시스템에 관한 연구

  • 권희철 (가천대학교 산업경영공학과)
  • Received : 2015.10.20
  • Accepted : 2015.12.20
  • Published : 2015.12.28

Abstract

In the past, there have been many theory and algorithms for vehicle tracking. But the time complexity of many feature point matching methods for vehicle tracking are exponential. Also, object segmentation and detection algorithms presented for vehicle tracking are exhaustive and time consuming. Therefore, we present the fast and efficient two stages method that can efficiently track the many moving vehicles on the road. The first detects the vehicle plate regions and extracts the feature points of vehicle plates. The second associates the feature points between frames using dynamic programming.

차량 등 객체를 추적하기 위한 많은 알고리즘들이 있지만 본 논문에서 제안하는 특징점 정합 알고리즘 분야는 지수 복잡도의 시간이 걸리는 작업이다. 더구나, 차량을 추적하기 위해 기존에 제안되었던 객체 추출 등 영상 전처리 알고리즘 또한 상당한 시간을 요구한다. 따라서 본 논문에서는 도로상에서 많은 차량들의 이동 궤적을 빠르고 효율적으로 추적하기 위한 방법을 2단계로 제안한다. 1단계로 객체 탐지가 아닌 번호판 영역을 먼저 탐지한 후 특징점을 추출하는 단계하고, 2단계로 특징점들을 정합하기 위한 비용산정식을 구한 후 동적계획법을 이용하여 효율적으로 차량을 추적할 수 있는 방법을 제안한다.

Keywords

References

  1. Jung Sang Yoo, Hee Chul Kwon, Intelligent Inference Architecture in Parking Control System, Journal of the Korea Management Engineering Society, Vol. 13, No. 3, pp. 231-237, 2008.
  2. Jung Sang Yoo, Hee Chul Kwon, Fuzzy Inference System Architecture for Customer Satisfaction Service, Journal of The Korea Society of Computer and Information, Vol. 15, No. 1, pp. 219-226, Jan. 2010. https://doi.org/10.9708/jksci.2010.15.1.219
  3. Jung Sang Yoo, Hee Chul Kwon, A hybrid Inference System for Efficiently Controlling Reversible Lane, Journal of The Korea Society of Computer and Information, Vol. 17, No. 11, pp. 19-26, Nov. 2012. https://doi.org/10.9708/jksci/2012.17.11.019
  4. D. Koller, K. Daniilidis, H. Nagel, Model-based Object Tracking in Monocular Image Sequences of Road Traffic Scenes. International Journal of Computer Vision, Vol. 10, pp. 257-281, 1993. https://doi.org/10.1007/BF01539538
  5. I. Sethi and R. Jain, Finding Trajectories of Feature Points in a Monocular Image Sequence, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 9, No.1, pp. 56-73, Jan. 1987.
  6. S. Rhee, et al., Vehicle Tracking Using Image Processing Techniques, in Rough Sets and Current Trends in Computing. Vol. 3066, S. Tsumoto, et al., Eds., ed: Springer Berlin Heidelberg, pp. 671-678, 2004.
  7. L. Jin-Cyuan, et al., Image-based vehicle tracking and classification on the highway, in Green Circuits and Systems (ICGCS), International Conference on 2010, pp. 666-670, 2010.
  8. H. Chung-Lin and L. Wen-Chieh, A vision-based vehicle identification system, in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on 2004, Vol.4, pp. 364-367. 2004.
  9. B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, A real-time computer vision system for vehicle tracking and traffic surveillance, Transp. Res. Part C, Vol. 6, No. 4, pp. 271-288, 1998. https://doi.org/10.1016/S0968-090X(98)00019-9
  10. Jung-Soo Han, Intelligent Recommendation Processor Simulation using Association Relationship, The Journal of Digital Policy & Management, Vol. 11, No. 12, pp. 431-438, Dec. 2013.
  11. Z. Iftikhar, P. Premaratne & P. Vial, "Computer vision based traffic monitoring system for multi-track freeways," Intelligent Computing Methodologies(Lecture Notes in Computer Science), vol. 8589, pp. 339-349, 2014.
  12. Margrit Betke,, Esin Haritaoglu, Larry S. Davis, Real-time multiple vehicle detection and tracking from a moving vehicle, Machine Vision and Applications, Vol. 12, No. 2, pp. 69-83, 2000. https://doi.org/10.1007/s001380050126
  13. Yen-Lin Chen Bing-Fei Wu Chung-Jui Fan, Real-time vision-based multiple vehicle detection and tracking for nighttime traffic surveillance, IEEE, Vol. 58, No. 5, pp. 3352-3358, 2011.
  14. Jalpa Patel, Zalak Dobariya, A Survey on Traffic Monitoring System for Detection And Tracking Vehicles at Night Time, International Journal of Innovative Research in Technology, Vol. 1, No. 10, pp. 82-86, 2014.
  15. Saeed Samadi and Farhad Mohammad Kazemi, A Multi-Agent Vision-Based System for Vehicle Detection, World Applied Sciences Journal, Vol. 15, No. 12, pp. 1722-1732, 2011.