DOI QR코드

DOI QR Code

소프트웨어 NHPP 신뢰성모형에 대한 고장시간 예측능력 비교분석 연구

Failure Time Prediction Capability Comparative Analysis of Software NHPP Reliability Model

  • 김희철 (남서울대학교 산업경영공학과) ;
  • 김경수 (백석문화대학교 인터넷정보학부)
  • Kim, Hee-Cheul (Dept. of Industrial & Management Engineering, Namseoul University) ;
  • Kim, Kyung-Soo (Dept. of Internet information, BaekSeok Culture University)
  • 투고 : 2015.08.30
  • 심사 : 2015.12.20
  • 발행 : 2015.12.28

초록

본 연구는 소프트웨어 NHPP 신뢰성 모형 (Goel--Okumo 모형, 지연된 S-형태 신뢰성모형 및 레일리분포 모형)의 예측능력을 분석하는 것을 목적으로 한다. 예측 능력분석은 두 가지 요인으로 분석이 될 것이다. 하나는 사용 가능한 고장자료에 대한 적용성의 정도이고 다른 하나는 예측능력 정도이다. 각 모형의 모수 추정은 고장시간자료의 첫 번째 고장시점부터 80%가 되는 고장시간 자료를 사용하고 기법은 최우추정법을 이용 하였다. 모형의 예측 능력의 비교에 있어서는 가능한 고장 데이터의 마지막 20%가 되는 선택된 자료를 이용하였다. 이 연구를 통하여 소프트웨어 관리자들에게 소프트웨어 고장분석을 하는데 사전정보로 활용 할 수 있다.

This study aims to analyze the predict capability of some of the popular software NHPP reliability models(Goel-Okumo model, delayed S-shaped reliability model and Rayleigh distribution model). The predict capability analysis will be on two key factors, one pertaining to the degree of fitment on available failure data and the other for its prediction capability. Estimation of parameters for each model was used maximum likelihood estimation using first 80% of the failure data. Comparison of predict capability of models selected by validating against the last 20% of the available failure data. Through this study, findings can be used as priori information for the administrator to analyze the failure of software.

키워드

참고문헌

  1. L. Kuo and T. Y. Yang., Bayesian Computation of Software Reliability, Journal of the American Statistical Association, Vol.91, pp. 763-773, 1996. https://doi.org/10.1080/01621459.1996.10476944
  2. Gokhale, S. S. and Trivedi, K. S. A time/structure based software reliability model, Annals of Software Engineering. 8, pp. 85-121. 1999. https://doi.org/10.1023/A:1018923329647
  3. Goel A L, Okumoto K, Time-dependent fault detection rate model for software and other performance measures, IEEE Trans. Reliab. 28, pp.206-11, 1978.
  4. Yamada S, Ohba H. and Osaki S., S-shaped software reliability modeling for software error detection", IEEE Trans. Reliab, 32, pp.475-484, 1983.
  5. Zhao M., Change-point problems in software and hardware reliability", Commun. Stat. Theory Methods, 22(3), pp.757-768, 1993. https://doi.org/10.1080/03610929308831053
  6. Shyur H-J., A stochastic software reliability model with imperfect debugging and change-point, J. Syst. Software 66, pp.135-141, 2003. https://doi.org/10.1016/S0164-1212(02)00071-7
  7. Pham H, Zhang X., NHPP software reliability and cost models with testing coverage", Eur. J. Oper. Res, 145, pp.445-454, 2003.
  8. Huang C-Y., Performance analysis of software reliability growth models with testing-effort and change-point, J. Syst. Software 76, pp. 181-194, 2005. https://doi.org/10.1016/j.jss.2004.04.024
  9. Kuei-Chen, C., Yeu-Shiang, H., and Tzai-Zang, L., A study of software reliability growth from the perspective of learning effects, Reliability Engineering and System Safety 93, pp. 1410-.1421, 2008. https://doi.org/10.1016/j.ress.2007.11.004
  10. Hee-Cheul KIM, "The Comparative Study of NHPP Half-Logistic Distribution Software Reliability Model using the Perspective of Learning Effects", Journal of Next Generation Information Technology, Vol. 4, No. 8, pp. 132-139, 2013.
  11. Hee-Cheul KIM, "The Comparative Study of NHPP Delayed S-Shaped and Extreme Value Distribution Software Reliability Model using the Perspective of Learning Effects", International Journal of Advancements in Computing Technology, Vol. 5, No.9, pp. 1210 -1218, 2013. https://doi.org/10.4156/ijact.vol5.issue9.143
  12. Kim, Hee-cheul, " The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Rayleigh and Burr Type", Journal of the Korea Society of Digital Industry and Information Management, pp. 1-11, 2014.
  13. Y. HAYAKAWA and G. TELFAR, "Mixed Poisson Type Processes with Application in Software Reliability", Mathematical and Computer Modelling, 31, pp. 151-156, 2000. https://doi.org/10.1016/S0895-7177(00)00082-0
  14. K. Kanoun and J. C. Laprie, "Handbook of Software Reliability Engineering", M.R.Lyu, Editor, chapter Trend Analysis. McGraw-Hill New York, NY, pp. 401-437, 1996.
  15. D. R. Prince Williams, Prediction Capability Analysis of Two and Three Parameters Software Reliability Growth Models, Infoprmation Technology Journal, 5(6), pp.1048-1052, 2006. https://doi.org/10.3923/itj.2006.1048.1052