DOI QR코드

DOI QR Code

하악 임플란트에 대합되는 상악 구치의 주변골 변화에 대한 임상연구

Bone changes around the maxillary posterior teeth opposing the implants in mandible: a clinical study

  • 박찬진 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 허윤혁 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소) ;
  • 조리라 (강릉원주대학교 치과대학 치과보철학교실 및 구강과학연구소)
  • Park, Chan-Jin (Department of Prosthodontics and Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Huh, Yoon-Hyuk (Department of Prosthodontics and Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Cho, Lee-Ra (Department of Prosthodontics and Research Institute of Oral Science, Gangneung-Wonju National University)
  • 투고 : 2015.07.30
  • 심사 : 2015.09.07
  • 발행 : 2015.12.31

초록

목적: 무치악 부위를 임플란트 보철로 수복하면 기능저하 상태였던 대합치는 생리적인 자극을 받게 된다. 본 연구는 하악 구치부 임플란트에 대합되는 상악치아의 골변화를 평가하였다. 연구 재료 및 방법: 보철물 장착시(기준점) 및 3, 6개월 후에 방사선 사진을 채득하였다. 맞춤형 필름유지기구를 제작하여 대합치의 연속적인 방사선 사진에 대한 투사를 표준화하였다. 디지털사진에서 관심부위에 대한 그레이수치를 시간별로 측정하여 95% 유의수준으로 반복측정분산분석으로 통계적 유의성을 검증하였다. 결과: 대합치의 그레이수치는 시간이 흐름에 따라 증가하였다. 치조정부위보다 중앙부위의 변화가 더 컸으나 근심과 원심의 그레이수치는 큰 차이를 나타내지 않았다. 그레이수치의 변화는 하중을 가하지 않았던 기간에 따라 다른 양상을 나타내었다. 결론: 기능저하였던 치아주변의 골조직에 기능적 하중이 가해지면 골조직의 변화가 발생할 수 있는 것으로 사료된다.

Purpose: When the edentulous area is restored by implant prostheses, the opposing hypofunctioned teeth will receive physiologic mechanical stimuli. This study evaluated the bone changes around the maxillary teeth opposing an implant restoration installed in the mandibular posterior area. Materials and Methods: Radiographs of the opposing teeth were taken at prostheses delivery (baseline), 3 and 6 months later. A customized film holding device was fabricated to standardize the projection geometry for the serial radiographs of the opposing teeth. The gray values of the region of interest of each digital image were compared according to time. Repeated measured analysis of variance was performed at the 95% significance level. Results: The gray values of the alveolar bone around the antagonist teeth of implants increased with time. The changes in gray values of the middle area were greater than those of the crestal area. However, the gray values of the mesial and distal areas were not different. The changes in gray values were different according to the unloaded time. Conclusion: A change in bone tissue will occur if a proper physiologic load is again applied to the bone tissues around a hypofunctioned tooth.

키워드

참고문헌

  1. Misch CE. Contemporary implant dentistry. 3rd ed. Missouri; CV Mosby; 2007. p. 327-43.
  2. Katz JL. The structure and biomechanics of bone. Symp Soc Exp Biol 1980;34:137-68.
  3. Frost HM. Bone "mass" and the "mechanostat": a proposal. Anat Rec 1987;219:1-9. https://doi.org/10.1002/ar.1092190104
  4. Steflik DE, Noel C, McBrayer C, Lake FT, Parr GR, Sisk AL, Hanes PJ. Histologic observations of bone remodeling adjacent to endosteal dental implants. J Oral Implantol 1995;21:96-106.
  5. Romanos GE, Toh CG, Siar CH, Wicht H, Yacoob H, Nentwig GH. Bone-implant interface around titanium implants under different loading conditions: a histomorphometrical analysis in the Macaca Fascicularis monkeys. J Periodontol 2003;74:1483-90. https://doi.org/10.1902/jop.2003.74.10.1483
  6. Johnson RB. Effect of altered occlusal function on transseptal ligament and new bone thicknesses in the periodontium of the rat. Am J Anat 1990;187:91-7. https://doi.org/10.1002/aja.1001870110
  7. Kinoshita Y, Tonooka K, Chiba M. The effect of hypofunction on the mechanical properties of the periodontium in the rat mandibular first molar. Arch Oral Biol 1982;27:881-5. https://doi.org/10.1016/0003-9969(82)90045-0
  8. Shimomoto Y, Chung CJ, Iwasaki-Hayashi Y, Muramoto T, Soma K. Effects of occlusal stimuli on alveolar/jaw bone formation. J Dent Res 2007;86:47-51. https://doi.org/10.1177/154405910708600107
  9. Motokawa M, Terao A, Karadeniz EI, Kaku M, Kawata T, Matsuda Y, Gonzales C, Darendeliler MA, Tanne K. Effects of long-term occlusal hypofunction and its recovery on the morphogenesis of molar roots and the periodontium in rats. Angle Orthod 2013;83:597-604. https://doi.org/10.2319/081812-661.1
  10. Jeffcoat MK, Reddy MS, Webber RL, Williams RC, Ruttimann UE. Extraoral control of geometry for digital subtraction radiography. J Periodontal Res 1987;22:369-402.
  11. Meijer HJ, Steen WH, Bosman F. Standardized radiographs of the alveolar crest around implants in the mandible. J Prosthet Dent 1992;68:318-21. https://doi.org/10.1016/0022-3913(92)90337-A
  12. Marx RE, Ehler WJ, Peleg M. "Mandibular and facial reconstruction" rehabilitation of the head and neck cancer patient. Bone 1996;19:59S-82S. https://doi.org/10.1016/S8756-3282(96)00137-8
  13. Stanford CM. Issues and considerations in dental implant occlusion: what do we know, and what do we need to find out? J Calif Dent Assoc 2005;33:329-36.
  14. Lee MR, Cho LR, Yi YJ, Choi HM, Park CJ. Correlation assessment between resonance frequency analysis and radiographic method according to periimplant bone change. J Korean Acad Prosthodont 2005;43:736-44.
  15. Grondahl K, Sunden S, Grondahl HG. Inter- and intraobserver variability in radiographic bone level assessment at Branemark fixtures. Clin Oral Implants Res 1998;9:243-50. https://doi.org/10.1034/j.1600-0501.1998.090405.x
  16. Jeon PD, Turley PK, Moon HB, Ting K. Analysis of stress in the periodontium of the maxillary first molar with a three-dimensional finite element model. Am J Orthod Dentofacial Orthop 1999;115:267-74. https://doi.org/10.1016/S0889-5406(99)70328-8
  17. Carneiro LS, da Cunha HA, Leles CR, Mendonca EF. Digital subtraction radiography evaluation of longitudinal bone density changes around immediate loading implants: a pilot study. Dentomaxillofac Radiol 2012;41:241-7. https://doi.org/10.1259/dmfr/89401091