DOI QR코드

DOI QR Code

동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석

Characterization of the Alzheimer's disease-related network based on the dynamic network approach

  • 투고 : 2015.09.01
  • 심사 : 2015.10.07
  • 발행 : 2015.12.25

초록

지금까지 생체 네트워크 분석 연구는 정적(static)인 개념으로만 다루어졌다. 그러나 실제 생명현상이 발생하는 세포 내에서는 세포의 상태 및 외부 환경에 따라 일부 단백질과 그 상호작용만이 선택적으로 활성화된다. 따라서 생체 네트워크의 구조가 시간의 흐름에 따라 변화하는 동적(dynamic)인 개념이 적용되어야 하며, 이런 개념은 질병의 진행 추이를 분석하는데 효율적이다. 본 논문에서는 동적인 네트워크 방법을 알츠하이머 질병에 적용하여 질병이 진행되는 단계에 따라 변화하는 단백질 상호작용 네트워크의 구조적, 기능적 특징에 대하여 분석하고자 한다. 우선, 유전자 발현데이터를 기반으로 각 질병의 진행 상태에 따른 부분 네트워크(정상, 초기, 중기, 말기)를 구축하였다. 이를 기반으로, 네트워크의 구조적 특성 분석을 수행하였다. 또한 기능적 특성 분석을 위해 유전자 군집(module)을 탐색하고, 군집별 유전자 기능(Gene Ontology) 분석을 수행했다. 그 결과, 네트워크의 특성들은 각 질병의 단계와 잘 대응되며, 동적 네트워크 분석법이 중요한 생물학적 이벤트를 설명하는데 이용될 수 있음을 보였다. 결론적으로 제안된 연구 방법을 통하여 그동안 알려지지 않았던 질병유발에 관련된 주요 네트워크 변화를 관측할 수 있고, 질병에 관여하는 복잡한 분자 수준의 발생 기작과 진행 과정을 이해하는데 중요한 정보를 획득할 수 있다.

Biological networks have been handled with the static concept. However, life phenomena in cells occur depending on the cellular state and the external environment, and only a few proteins and their interactions are selectively activated. Therefore, we should adopt the dynamic network concept that the structure of a biological network varies along the flow of time. This concept is effective to analyze the progressive transition of the disease. In this paper, we applied the proposed method to Alzheimer's disease to analyze the structural and functional characteristics of the disease network. Using gene expression data and protein-protein interaction data, we constructed the sub-networks in accordance with the progress of disease (normal, early, middle and late). Based on this, we analyzed structural properties of the network. Furthermore, we found module structures in the network to analyze the functional properties of the sub-networks using the gene ontology analysis (GO). As a result, it was shown that the functional characteristics of the dynamics network is well compatible with the stage of the disease which shows that it can be used to describe important biological events of the disease. Via the proposed approach, it is possible to observe the molecular network change involved in the disease progression which is not generally investigated, and to understand the pathogenesis and progression mechanism of the disease at a molecular level.

키워드

참고문헌

  1. Barabasi AL, Oltvai ZN, "Network biology: understanding the cell's functional organization." Nature reviews Genetics, 5(2):101-113, 2004. https://doi.org/10.1038/nrg1272
  2. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL, "The large-scale organization of metabolic networks." Nature, 407(6804):651-654, 2000. https://doi.org/10.1038/35036627
  3. Kim TH, Kim J, Heslop-Harrison P, Cho KH, "Evolutionary design principles and functional characteristics based on kingdom-specific network motifs." Bioinformatics, 27(2):245-251, 2011. https://doi.org/10.1093/bioinformatics/btq633
  4. Seo CH, Kim JR, Kim MS, Cho KH,"Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks." Bioinformatics, 25(15):1898-1904, 2009. https://doi.org/10.1093/bioinformatics/btp316
  5. Kim MS, Kim JR, Cho KH, "Dynamic network rewiring determines temporal regulatory functions in Drosophila melanogaster development processes." BioEssays : news and reviews in molecular, cellular and developmental biology, 32(6):505-513, 2010. https://doi.org/10.1002/bies.200900169
  6. Kim MS, Kim JR, Kim D, Lander AD, Cho KH, "Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster." BMC systems biology, 6:31, 2012. https://doi.org/10.1186/1752-0509-6-31
  7. Faisal FE, Milenkovic T, "Dynamic networks reveal key players in aging." Bioinformatics, 30(12):1721-1729, 2014. https://doi.org/10.1093/bioinformatics/btu089
  8. Liang D, Han G, Feng X, Sun J, Duan Y, Lei H, "Concerted perturbation observed in a hub network in Alzheimer's disease." PloS one, 7(7):e40498, 2012. https://doi.org/10.1371/journal.pone.0040498
  9. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al, "Gene ontology: tool for the unification of biology. The Gene Ontology Consortium." Nature genetics, 25(1):25-29, 2000. https://doi.org/10.1038/75556
  10. Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Ami GOH, Web Presence Working G, "AmiGO: online access to ontology and annotation data." Bioinformatics, 25(2):288-289, 2009. https://doi.org/10.1093/bioinformatics/btn615
  11. Guimera R, Nunes Amaral LA, "Functional cartography of complex metabolic networks." Nature, 433(7028):895-900, 2005. https://doi.org/10.1038/nature03288
  12. Barabasi AL, "Scale-free networks: a decade and beyond." Science, 325(5939):412-413, 2009. https://doi.org/10.1126/science.1173299
  13. Talwar P, Silla Y, Grover S, Gupta M, Agarwal R, Kushwaha S, Kukreti R, "Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease." BMC genomics, 15:199, 2014. https://doi.org/10.1186/1471-2164-15-199
  14. Com E, Clavreul A, Lagarrigue M, Michalak S, Menei P, Pineau C, "Quantitative proteomic Isotope-Coded Protein Label (ICPL) analysis reveals alteration of several functional processes in the glioblastoma." Journal of proteomics, 75(13):3898-3913, 2012. https://doi.org/10.1016/j.jprot.2012.04.034
  15. Kim T, Hinton DJ, Choi DS, "Protein kinase C-regulated abeta production and clearance." International journal of Alzheimer's disease, 2011:857368, 2011.
  16. Rogev A, Bandyopadhyay S, Zofall M, Zhang K, Fischer T, Collins SR, Qu H, Shales M, Park HO, Hayles J et al, "Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast." Science, 322(5900):405-410, 2008. https://doi.org/10.1126/science.1162609
  17. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, Arnold SE, Attems J, Beach TG, Bigio EH et al, "Primary age-related tauopathy (PART): a common pathology associated with human aging." Acta neuropathologica, 128(6):755-766, 2014. https://doi.org/10.1007/s00401-014-1349-0
  18. Choi SW, Lee CH, "Disease Classification using Random Subspace Method based on Gene Interaction Information and mRMR Filter", Journal of the Korean Institute of Intelligent Systems, 22(2):192-197, 2012. https://doi.org/10.5391/JKIIS.2012.22.2.192
  19. Lee SA, Lee KM, Lee SJ, Kim WJ, Kim YJ, Bae SC, "Gene filtering based on fuzzy pattern matching for whole genome microarray data analysis", Journal of the Korean Institute of Intelligent Systems, 18(4):471-475, 2008. https://doi.org/10.5391/JKIIS.2008.18.4.471
  20. Ha KS, Lim JM, Kim HG, "Integrated Model Design of Microarray Data Using miRNA, PPI, Disease Information", Journal of the Korean Institute of Intelligent Systems, 22(6):786-792, 2012. https://doi.org/10.5391/JKIIS.2012.22.6.786