DOI QR코드

DOI QR Code

Design of a Smart Application using Big Data

빅 데이터를 이용한 스마트 응용의 설계

  • Oh, Sun-Jin (Dept. of Computer & Information Science, Semyung University)
  • Received : 2015.10.05
  • Accepted : 2015.12.11
  • Published : 2015.12.31

Abstract

With the rapid growth of Information technology and up-to-date wireless network application technologies, huge and various types of data are produced in every moment, the value and significance of the analysis techniques using big data are increased recently. Big data, which were useless since they were too huge to manage in the past, enables us to get new inspirations and values in various practical application areas through the development of big data computing devices and analytic tools. Nowadays, however, it is true that most of the big data are still wasted without properly analyzed and used. In the long run, the preliminary stipulations for finding inspirations and extracting new values from big data are securing big data analysis and application techniques to process big data efficiently. In this paper, we study accurate data analysis techniques and data process technologies those are able to extract needed inspirations and values from big data efficiently, then design the smart application that adopts these techniques practically.

정보 기술과 첨단 무선 네트워크 응용 기술의 급속한 발전과 더불어, 방대하고 다양한 형태의 데이터들이 시시각각 양산되고 있으며, 최근 빅 데이터 분석기술의 중요성과 가치는 점차 증대되고 있다. 과거에는 너무 방대하여 관리조차 힘들어 무용지물이던 빅 데이터는 데이터 수집 컴퓨팅 장비와 분석 도구의 발전을 통해 다양한 활용분야에서 작은 규모의 데이터로는 불가능했던 새로운 영감이나 가치를 추출해 내는 것이 가능하게 되었다. 하지만 현실 세계에서는 아직도 빅 데이터 대부분이 제대로 적절하게 분석되어 사용되지 못하고 사장되는 것이 사실이다. 결국, 빅 데이터에서 통찰력 습득과 새로운 가치 창출을 위한 전제 조건으로 효율적인 빅 데이터 처리를 위한 분석 기술의 확보가 중요하다고 할 수 있다. 본 논문에서는 이러한 빅 데이터를 보다 효율적으로 처리하고 원하는 관심 정보를 효과적으로 추출해 낼 수 있는 정밀한 분석기법과 처리 기술을 연구하고 이를 실제 적용하는 스마트 응용을 설계한다.

Keywords

References

  1. John Gantz, David Reinsel, "The Digital Universe 2020: Big data, Bigger Digital Shadows, and Biggest Growth in the Far East," IDCIVIEW, pp. 1-16, 2012.
  2. S. Kim et. al., "A Big Data Application for Anomaly Detection in VANETs," JIIBC, Vol. 14, No. 6, pp. 175-181, 2014. https://doi.org/10.7236/JIIBC.2014.14.6.175
  3. Gartner, "High-Tech Tuesday Webinar; Big Data Oppourtunities in Vertical Industries," Gartner Big Data Analytics, 2012.
  4. McKinsey, "Big data: The next frontier for innovation, competition, and productivity," Mckinsey Global Institute, 2011.
  5. H. Y. Yang, "Technology Planning Methodology using Big Data," KISTEP, Vol. 12, pp. 3-33, 2012.
  6. Christian Bizer, "The Meaningful Use of Big Data: Four Perspectives-Four Challenges," SIGMOD Record, Vol. 40, No. 4, pp. 56-60, 2011.
  7. M. Y. Lee, "Big Data Technology Trends for Big Data Analysis," J. of Information Processing Systems, Vol. 19, No. 2, pp. 20-28, 2012.
  8. H. Wickham, "The Split-Apply-Combine Strategy for Big Data Analysis," Journal of Statistical Software, Vol. 40, No. 1, pp. 1-29, 2011.
  9. M. Spiliopoulou, "Web Usage Mining for Web site Evaluation," Communication of the ACM, Vol. 43, No. 8, pp. 127-134, 2000. https://doi.org/10.1145/345124.345167
  10. K. M. Park, H. Park, H. G. Kim, H. Ko, "Review Mining using Lexical Knowledge and Modality Analysis," Proceedings of the 5th International Universal Communication Symposium, 2011.
  11. S. S. Kim et. al., "Neuro-Fuzzy Modeling using Hierarchical Clustering & Gaussian Mixture Model," J. of Fuzzy Logic & Intelligent Systems, Vol 13, No. 5, pp. 512-519, 2003.
  12. D. W. Choi et. al., "Smartphone based Bio Cognition Data Mining Algorithm," Proceedings of 2010 Conference in KOEN, pp. 155-158, 2010.
  13. X. Y. Yang, Z. Liu, Y. Fu, "MapReduce as a Programming Model for Association Rules Algorithm on Hadoop," Proceeding of the 3rd International Conference on Information Sciences and Interaction Sciences (ICIS), pp. 99-102, 2010.
  14. K. Lee et. al., "Semantic Social Network Analysis," J. of Information Processing Systems, Vol. 18, No. 6, pp. 54-67, 2011.
  15. F. Gordon, O. Corby, M. Buffa, "Semantic Social Network Analysis," Proceeding of WebSci'09, Society On-line, 2009.