DOI QR코드

DOI QR Code

병진이동으로 인한 주동파괴 시 지오그리드 보강토 모델벽체의 거동

Behaviour of geogrid reinforced model retaining wall in active failure state by execution of parallel movement

  • Lee, Kang-Man (Korea railroad Corp) ;
  • Kong, Suk-Min (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Lee, Dae-Young (Geotechnical Engineering Research Division, Korea Institue of Civil Engineering and Building Technology) ;
  • Lee, Yong-Joo (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 투고 : 2015.09.02
  • 심사 : 2015.12.17
  • 발행 : 2015.12.30

초록

최근 사면 및 흙막이 벽체의 붕괴에 따른 안전사고가 빈번하게 발생함에 따라 보강토 옹벽 공법의 안정성이 사회적인 문제로 대두되고 있다. 본 연구는 모형벽체 시험기를 제작하여 지오그리드 길이와 보강 층수에 따른 주동파괴 시 흙막이 벽체와 지반의 거동특성을 분석하였다. 벽체 시험에 사용된 지오그리드는 각각 $30cm{\times}60cm$, $30cm{\times}70cm$, $30cm{\times}80cm$ (폭 ${\times}$ 길이)의 크기를 가지며, 일정한 깊이로 설치되었다. 모형벽체 시험은 2장의 동일한 길이의 지오그리드, 2장의 서로 다른 길이의 지오그리드, 4장의 동일한 길이의 지오그리드, 4장의 서로 다른 길이의 지오그리드 총 4가지 case로 나누어 모형시험을 진행하였다. 또한 유한요소 수치해석을 통해 보강방법에 따른 지반의 거동을 예측하였다.

Recently, there has been a string of negligent accidents for the retaining wall and slope. In order to measure the ground deformation for the MSE wall, the authors carried out the model test to assess behavioral characteristics of geogrid MSE walls in active failure state with different conditions of geogrid reinforcement. The models are built in the soil container box having dimension, 100 cm long, 90 cm height, and 10 cm wide. The reinforcement used in the model test is geogrid (polyvinyl chloride, PVC). Three geogrids are sized by $30cm{\times}60cm$, $30cm{\times}70cm$, $30cm{\times}80cm$ (width ${\times}$ length) respectively. In this study, the laboratory model tests represented for several conditions of the MSE wall, and then its results were compared to 2D FE analysis.

키워드

참고문헌

  1. Cho, S. D., Ahn, T. B., Lee, K. W., and Oh, S. Y. (2004), "Model Test on the Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers", Journal of Korean Geotechnical Society, Vol.20, No.5, pp.109-116.
  2. Das, B. M. (2009), Principles of Geotechnical Engineering, 7th Edition, Cengage learning, pp.302-303.
  3. Ghionna, V. N., Fioravante and Vicari, M. (2002), "Full Scale Test on a Retaining Wall with Non-uniform Reinforcements", proc. of Geosynthetics 7th ICG, Vol.1, pp.279-282.
  4. Korean geosyntheties society. (2010), Work about earth reinforcement, CIR, pp.34-36.
  5. Lee, I. M. (2014), Principles of Foundation Engineering, 1st Edition, CIR, pp.283-292.
  6. Leshchinsky, D. and Vulova, C. (2001), "Numerical Investigation of the Effects of Geosynthetic Spacing on Failure Mechanisms in MSE Block Walls", Journal of Geosynthetics International, Vol.8, No.4, pp.343-365. https://doi.org/10.1680/gein.8.0199
  7. Park, J. W. and Chun, B. S. (2012), "A Study on the Evaluation of Field Installation Damage and Strength Reduction Factor of Geogrid for Reinforced Retaining Wall", Journal of Korean Geo-Environmental Society, Vol.13, No.7, pp.5-12.
  8. Pinto, M. I. M. and Cousens, T. W. (1999), "Modelling a Geotextile Reinforced Brick-faced Soil Retaining Wall", Journal of Geosynthetics International, Vol.6, No.5, pp.417-447. https://doi.org/10.1680/gein.6.0159
  9. Plaxis. (2012), Plaxis 2D reference manual, Plxis, pp.16-17.
  10. Wong, K. S. and Broms, B. B. (1994), "Failure Modes an Model Tests of a Geotextile Reinforced Wall", Geotextiles and geomembranes, Vol.13, pp.475-493. https://doi.org/10.1016/0266-1144(94)90009-4