References
- P. Comon, (1994). Independent component analysis, a new concept?, Signal Processing, vol. 36, pp. 287-314. https://doi.org/10.1016/0165-1684(94)90029-9
- A. Hyvarinen, J. Karhunen, and E. Oja, (2001). Independent component analysis. John Wiley & Sons.
- A. Cichocki and S. Amari, (2003). Adaptive Blind Signal and Image Processing (Learning Algorithms and Applications). New York: John Wiley.
- A. J. Bell and T. J. Sejnowski, (1995). An information -maximization approach to blind separation and blind deconvolution. Neural Computation, vol. 7, pp. 1129-1159. https://doi.org/10.1162/neco.1995.7.6.1129
- S.-i. Amari, A. Cichocki, and H. H. Yang, (1996). A new learning algorithm for blind signal separation. Advances in neural information processing systems, pp. 757-763.
- A. Hyvarinen and E. Oja, (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, vol. 9, pp. 1483-1492. https://doi.org/10.1162/neco.1997.9.7.1483
- H. Sawada, R. Mukai, S. Araki, and S. Makino, (2001). A polar-coordinate based activation function for frequency domain blind source separation. in Proc. Int. Conf. ICA and BSS, pp. 663-668.
- Kim, T., H. T. Attias, Lee, S..-Y., and Lee, T.-W., (2007). Blind source separation exploiting higher-order frequency dependencies. Audio, Speech, and Language Processing, IEEE Transactions on, vol. 15, pp. 70-79. https://doi.org/10.1109/TASL.2006.872618
- F. Nesta, P. Svaizer, and M. Omologo, (2011). Convolutive BSS of short mixtures by ICA recursively regularized across rrequencies. Audio, Speech, and Language Processing, IEEE Transactions on, vol. 19, pp. 624-639. https://doi.org/10.1109/TASL.2010.2053027
- K. Matsuoka, (2002). Minimal distortion principle for blind source separation. Proceedings of the 41st SICE Annual Conference, vol.4, pp. 2138-2143.
- H. Sawada, S. Araki, R. Mukai, and S. Makino, (2007). Grouping separated frequency components by estimating propagation model parameters in frequency-domain blind source separation. Audio, Speech, and Language Processing, IEEE Transactions on, vol. 15, pp. 1592-1604. https://doi.org/10.1109/TASL.2007.899218
- H. Sawada, S. Araki, and S. Makino, (2007) Measuring dependence of bin-wise separated signals for permutation alignment in frequency-domain BSS. in Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on, pp. 3247-3250.
- Lee, I. and Jamg, G. J., (2012). Independent vector analysis based on overlapped cliques of variable width for frequency-domain blind signal separation. EURASIP Journal on Advances in Signal Processing, vol. 2012, p. 113. https://doi.org/10.1186/1687-6180-2012-113
- Lee, I., Kim, T. and Lee, T.-W., (2007). Fast fixed-point independent vector analysis algorithms for convolutive blind source separation. Signal Processing, vol. 87, pp. 1859-1871. https://doi.org/10.1016/j.sigpro.2007.01.010
- S. Haykin, (2009). Neural networks and learning machines vol. 3. Prentice Hall.
- E. A. Lehmann. (2012). Image-source method: Matlab code implementation. www.eric-lehmann.com
- K. d. Donohue. (2009). Audio Systems Lab Experimental Data. http://www.engr.uky.edu/-donohue/audio/Data/audioexpdata.htm
- Quan, X. and Bae, K. (2014). Frequency bin alignment using covariance of power ratio of separated signals in multi-channel FD-ICA. Phonetics and Speech Sciences, Vol6, pp. 149-153. (전성일, 배건성, (2014). 다채널 주파수영역 독립성분분석에서 분리된 신호 전력비의 공분산을 이용한 주파수 빈 정렬. 말소리와 음성과학, vol. 6, pp. 149-153.) https://doi.org/10.13064/KSSS.2014.6.3.149