DOI QR코드

DOI QR Code

Effect of Supercritical Carbon Dioxide on Physicochemical Properties and Microbial Reduction of Freeze-Dried Bovine Liver

초임계 이산화탄소 처리가 동결 건조된 소간의 이화학적 특성 및 미생물 저감화에 미치는 영향

  • Kim, Hye-Min (AMICOGEN Ltd.) ;
  • Woo, Sung-Woon (AMICOGEN Ltd.) ;
  • Kim, Ah-Na (Department of Agricultural Chemistry and Food Science and Technology (Institute of Agriculture and Life Sciences), Gyeongsang National University) ;
  • Heo, Ho-Jin (Department of Agricultural Chemistry and Food Science and Technology (Institute of Agriculture and Life Sciences), Gyeongsang National University) ;
  • Chun, Ji-Yeon (Department of Food Technology, Sunchon National University) ;
  • Choi, Sung-Gil (Department of Agricultural Chemistry and Food Science and Technology (Institute of Agriculture and Life Sciences), Gyeongsang National University)
  • 김혜민 (아미코젠(주)) ;
  • 우성운 (아미코젠(주)) ;
  • 김아나 (경상대학교 농화학식품공학과(농업생명과학연구원)) ;
  • 허호진 (경상대학교 농화학식품공학과(농업생명과학연구원)) ;
  • 천지연 (순천대학교 식품공학과) ;
  • 최성길 (경상대학교 농화학식품공학과(농업생명과학연구원))
  • Received : 2015.08.11
  • Accepted : 2015.11.11
  • Published : 2015.12.31

Abstract

Supercritical carbon dioxide ($SC-CO_2$) treatment has been becoming an important method for substituting the use of organic solvents for samples extraction prior to analysis due to its low toxicity, ease of handling, low cost of disposal etc. Freeze-dried bovine liver was treated with $SC-CO_2$ under different pressures (200, 300, and 450 bar) in order to investigate effects on physicochemical properties and reduction of microbial load. The yield of lipid extraction from bovine liver by $SC-CO_2$ treatment increased with increasing pressure, with values of 84, 86, and 90% in response to 200, 300, and 450 bar, respectively. Results of high performance liquid chromatography analysis showed that vitamin A and coenzyme $Q_{10}$ ($CoQ_{10}$), which is soluble in lipid, were almost removed from bovine liver by $SC-CO_2$ treatment. Saturated fatty acids ratio of bovine liver decreased with increasing pressure, whereas polyunsaturated fatty acids increased with increasing pressure. Total content of amino acids in bovine liver treated by $SC-CO_2$ was less than that of the control sample without treatment. The number of aerobic bacteria in bovine liver, which was stored at $5^{\circ}C$ for 5 days and freeze-dried, decreased from 6.2 to 4.2 log CFU/g by $SC-CO_2$ treatment at 100 bar for 3 h. Interestingly, coliform bacteria were not found in the bovine liver sample by $SC-CO_2$ at 100 bar for 3 h under all storage conditions. This indicates that $SC-CO_2$ treatment can effectively reduce coliform bacteria in the food matrix even at low moisture. In conclusion, freeze-dried bovine liver by proper $SC-CO_2$ treatment may be used as a potential high protein source, with increasing microbial safety and stability of lipid oxidation.

본 연구에서는 초임계 이산화탄소 처리에 따라 동결 건조된 소간의 이화학적 특성과 미생물 저감화 효과를 연구하였다. 다양한 압력(200, 300 및 450 bar)으로 초임계 이산화탄소를 처리한 결과, 먼저 지방 추출 수율의 경우 200, 300, 450 bar에서 각각 84, 86, 90%로 나타나 처리 압력이 높아짐에 따라 증가하는 경향을 보였다. 비타민 A 및 $CoQ_{10}$ 성분은 지용성 물질로서 거의 대부분 초임계 이산화탄소 처리에 의해 다른 지방성분과 같이 추출된 것으로 나타났다. 추출된 지방의 지방산을 분석한 결과, 포화지방산 비율은 처리 압력이 높아질수록 감소한 반면에 다가불포화지방산은 증가하는 경향을 보였다. 총 아미노산의 경우 초임계 이산화탄소를 처리한 시료군에서 대조군에 비해 낮은 함량을 보였다. 총세균수의 경우 동결 건조로 인해 수분 함량이 극히 낮아졌음에도 불구하고 처리 시간이 길어질수록 저감화되었으며, 또한 5일간 냉장 저장한 시료에서 총세균수가 약 6.2 log CFU/g 이었으나 100 bar에서 3시간 처리에 의해 약 4.4 log CFU/g으로 저감화되었다. 특히 흥미롭게도 대장균군의 경우 100 bar에서 3시간 처리 후 저장 시 7일차까지 전혀 검출되지 않았다. 본 결과는 초임계 이산화탄소 처리가 수분 함량이 낮은 식품소재의 대장균군 저감화에도 효과적일 수 있다는 것을 나타내는 것이라 사료된다. 결론적으로 초임계 이산화탄소의 적절한 처리를 통해 미생물 안전성 및 지방 산화에 대한 안정성이 개선된 소간을 고단백 식품소재로 활용할 수 있으리라 판단된다.

Keywords

References

  1. Joo ST. 2012. Meat notebook. Woodeumji Publisher, Seoul, Korea. p 110.
  2. Stille G. 1953. Antitoxic effect of liver extracts. Arzneimittelforschung 3: 127-129.
  3. Balazs M, Ban I, Magyar I, Richter R, Vecsei A. 1963. A study on the effect of aqueous liver extract and liver hydrolysate on chronic liver damage in rats induced by carbon. Orv Hetil 24: 342-344.
  4. Mascitelli-Coriandoli E, Lanzani P. 1962. Antitoxic and liver-protective activities of liver extracts in carbon tetrachloride poisoning. Boll Chim Farm 101: 698-714.
  5. Kim HJ, Kwon DH, Shon DH. 2008. Optimization of enzymatic hydrolysis for the production of antitoxic bovine hepatic extract. Korean J Food Sci Technol 40: 190-193.
  6. O'Keeffe MJ, O'Keeffe M, Glennon JD, Lightfield AR, Maxwell RJ. 1998. Supercritical fluid extraction of clenbuterol from bovine liver tissue. Analyst 123: 2711-2714. https://doi.org/10.1039/a805042b
  7. Joung SN, Kim SY, Yoo KP. 2001. Ultra dry-cleaning technology using supercritical carbon dioxide. Clean Technology 7: 13-25.
  8. Lee SM, Yun JH, Chun BS. 2011. Fatty acid composition and oxidative properties of anchovy oil extracted by supercritical carbon dioxide. Clean Technology 17: 266-272.
  9. Hwang AR, Jung II, Lim GB, Ryu JH. 2009. Extraction of oil from canola seeds with supercritical carbon dioxide. KSBB J 24: 367-376.
  10. Spilimbergo S, Bertucco A, Lauro FM, Bertoloni G. 2003. Inactivation of Bacillus subtilis spores by supercritical $CO_2$ treatment. Innovative Food Sci Emerging Technol 4: 161-165. https://doi.org/10.1016/S1466-8564(02)00089-9
  11. Ballestra P, Abreu Da Silva A, Cuq JL. 1996. Inactivation of Escherichia coli by carbon dioxide under pressure. J Food Sci 61: 829-831. https://doi.org/10.1111/j.1365-2621.1996.tb12212.x
  12. Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L, Debevere J, Van Impe JF, Devlieghere F. 2008. High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future. Int J Food Microbiol 117: 1-28.
  13. Park HS, Lee YH, Kim W, Choi HJ, Kim KH. 2012. Disinfection of wheat grains contaminated with Penicillium oxalicum spores by a supercritical carbon dioxide-water cosolvent system. Int J Food Microbiol 156: 239-244. https://doi.org/10.1016/j.ijfoodmicro.2012.03.032
  14. Arnaiz E, Bernal J, Martin MT, Nozal MJ, Bernal JL, Toribio L. 2012. Supercritical fluid extraction of free amino acids from broccoli leaves. J Chromatogr A 1250: 49-53. https://doi.org/10.1016/j.chroma.2012.04.066
  15. AOAC. 1990. Official method of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 8-35.
  16. Jeong CH, Bae YI, Lee HJ, Shim KH. 2003. Chemical components of propolis and its ethanolic extracts. J Korean Soc Food Sci Nutr 32: 501-505. https://doi.org/10.3746/jkfn.2003.32.4.501
  17. Mattila P, Lehtonen M, Kumpulainen J. 2000. Comparison of in-line connected diode array and electrochemical detectors in the high-performance liquid chromatographic analysis of coenzymes Q9 and Q10 in food materials. J Agric Food Chem 48: 1229-1233. https://doi.org/10.1021/jf990581f
  18. Metcalfe LD, Schmitz AA. 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal Chem 33: 363-364. https://doi.org/10.1021/ac60171a016
  19. Jeong CH, Shim KH. 2004. Quality characteristics of sponge cakes with addition of Pleurotus eryngii mushroom powders. J Korean Soc Food Sci Nutr 33: 716-722. https://doi.org/10.3746/jkfn.2004.33.4.716
  20. Diliello LR. 1982. Methods in food and dairy microbiology. AVI Publishing Co., Westport, CT, USA. p 20-44.
  21. Kang SS, Kim BJ, Chun BS. 1999. Recovery of high unsaturated fatty acid from squid processing wastes using supercritical carbon dioxide extraction method. J Korean Fish Soc 32: 217-222.
  22. Turne C, King JW, Mathiasson L. 2001. Supercritical fluid extraction and chromatography for fat-soluble vitamin analysis. J Chromatogr A 936: 215-237. https://doi.org/10.1016/S0021-9673(01)01082-2
  23. Kim JY, Jeong SW, Paek JE, Kim JH, Kwak JS, Lee YJ, Kang TS, Kwon OR. 2013. Systematic review of the effect of coenzyme Q10 on antioxidant capacity while focused on evaluation of claims for health functional food. J Nutr Health 46: 218-225. https://doi.org/10.4163/jnh.2013.46.3.218
  24. Catchpole OJ, von Kamp JC, Grey JB. 1997. Extraction of squalene from shark liver oil in a packed column using supercritical carbon dioxide. Ind Eng Chem Res 36: 4318-4324. https://doi.org/10.1021/ie9702237
  25. Lim SB, Jwa MK, Ko YH, Yoo IJ. 1997. Supercritical carbon dioxide extraction of dried egg yolk. J Korean Soc Food Sci Nutr 26: 860-865.
  26. Park HS, Choi HJ, Kim KH. 2013. Effect of supercritical $CO_2$ modified with water cosolvent on the sterilization of fungal spore-contaminated barley seeds and the germination of barley seeds. J Food Saf 33: 94-101. https://doi.org/10.1111/jfs.12027
  27. Arashisar S, Hisar O, Kaya M, Yanik T. 2004. Effects of modified atmosphere and vacuum packaging on microbiological and chemical properties of rainbow trout (Oncorynchus mykiss) fillets. Int J Food Microbiol 97: 209-214. https://doi.org/10.1016/j.ijfoodmicro.2004.05.024
  28. Daniels JA, Krishnamurthi R, Risvi SSH. 1985. A review of effects of carbon dioxide on microbial growth and quality. J Food Prot 48: 532-537. https://doi.org/10.4315/0362-028X-48.6.532
  29. Finne G. 1982. Modified- and controlled-atmosphere storage of muscle foods. Food Technol 36: 128-133.
  30. Gill CO, Mollin G. 1991. Modified atmosphere and vacuum packaging. In Food Preservatives. Russell NJ, Gould GW, eds. Kluwer Academic Publishers, New York, NY, USA. p 172-199.
  31. Hotchkiss JH. 1989. Advances in and aspects of modified atmosphere packaging in fresh red meats. Proceeding of 42nd Annual Reciprocal Meat Conference of the American Meat Science Association, National Life Stock and Meat Board. Chicago, IL, USA. p 31-33.
  32. Stammen K, Gerdes D, Caporaso F. 1990. Modified atmosphere packaging of seafood. Crit Rev Food Sci Nutr 29: 301-331. https://doi.org/10.1080/10408399009527530

Cited by

  1. Physicochemical characteristics and microbial safety of defatted bovine heart and its lipid extracted with supercritical-CO2 and solvent extraction vol.97, pp.None, 2018, https://doi.org/10.1016/j.lwt.2018.07.019