DOI QR코드

DOI QR Code

Evaluation of Antioxidant and Antimicrobial Activities of Solvent Extracts from Coriolus versicolor

구름버섯(Coriolus versicolor)의 용매 추출물에 대한 항균 및 항산화 활성 조사

  • Han, So-Ra (Department of Pharmaceutical Engineering, SunMoon University) ;
  • Noh, Min-Young (Department of Pharmaceutical Engineering, SunMoon University) ;
  • Lee, Joo-Ho (Department of Pharmaceutical Engineering, SunMoon University) ;
  • Oh, Tae-Jin (Department of Pharmaceutical Engineering, SunMoon University)
  • Received : 2015.08.07
  • Accepted : 2015.10.16
  • Published : 2015.12.31

Abstract

Antioxidant activities of various solvent extracts from Coriolus versicolor were investigated for their total polyphenol content, total flavonoid content, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radical scavenging activity. C. versicolor extracts were produced by organic solvents such as ethanol, ethyl acetate, and methanol. Total polyphenol and flavonoid contents in the ethanol and ethyl acetate extracts were higher than those in the methanol extract. DPPH radical scavenging activity of methanol extract showed the highest value of 80.3%, which was similar to that of ascorbic acid (85.5%). All extracts showed good (>90.0%) ABTS cation radical scavenging activity. The antimicrobial activities of these extracts from C. versicolor were evaluated against six strains of bacteria using the disc diffusion method. All extracts showed antimicrobial activities against all tested bacteria except Staphylococcus aureus. These results indicate that various extracts from C. versicolor could be useful as natural antioxidant and antimicrobial agents.

본 연구는 약용 버섯으로 쓰이는 구름버섯을 ethyl acetate, ethanol 및 methanol 등으로 추출하고 각 추출용매에 따른 구름버섯 추출물로부터 총 폴리페놀 및 총 플라보노이드 함량을 측정하였으며, DPPH 라디칼 소거능과 ABTS 라디칼소거능 등의 항산화 활성 및 항균 활성을 조사하였다. 구름버섯의 총 폴리페놀 함량과 총 플라보노이드 함량은 ethyl acetate와 ethanol 추출물에서 methanol 추출물보다 높게 나타났다. DPPH 라디칼 소거능은 methanol 추출물이 대조구로 사용한 1 mM ascorbic acid의 DPPH 라디칼 소거능과 유사한 약 80% 소거능을 보여주었으며, ethanol 추출물과 ethyl acetate 추출물보다 유의적으로 높았다. ABTS 라디칼 소거능은 모든 추출물에서 ascorbic acid의 활성과 유사한 약 90% 소거능이 측정되었다. 결과적으로 추출용매의 종류에 따라 DPPH 라디칼 소거능은 영향을 받지만, ABTS 라디칼은 극성 및 비극성 물질 모두와 반응하여 소거되므로 추출용매의 영향 없이 높은 ABTS 라디칼 소거능을 나타내었다. 그리고 구름버섯의 항균 활성 측정 결과 모든 추출물에서 S. aureus를 제외한 모든 균주에 대한 활성을 확인할 수 있었으며, 다양한 다제내성 균주에 대한 구름버섯의 항균활성은 구름버섯이 천연 항균 소재로서의 가능성이 있음을 보여주는 의미 있는 결과이다. 또한 DPPH 라디칼과 ABTS 라디칼 소거능이 ascorbic acid와 같이 높은 항산화능을 보임으로써 구름버섯이 천연 항산화제로서 이용 가치가 있음을 확인할 수 있었다. 이렇게 항균 및 항산화 활성을 동시에 나타내는 구름버섯은 향후 분야별 허용 추출용매를 이용하여 추출방법 및 추출조건 등을 일부 변형한다면 건강기능성 식품 및 화장품 등에 첨가 가능한 원료소재로 활용될 수 있을 것으로 생각된다.

Keywords

References

  1. Choi OK, Kim Y, Cho GS, Sung CK. 2002. Screening for antimicrobial activity from Korean plants. Korean J Food & Nutr 15: 300-306.
  2. Han JH, Moon HK, Chung SK, Kang WW. 2013. Comparison of antioxidant activities of radish Bud (Raphanus sativus L.) according to extraction solvents and sprouting period. J Korean Soc Food Sci Nutr 42: 1767-1775. https://doi.org/10.3746/jkfn.2013.42.11.1767
  3. Lee HJ, Do JR, Jung SK, Kim HK. 2014. Physiological properties of Sarcodon aspratus extracts by ethanol concentration. J Korean Soc Food Sci Nutr 43: 656-660. https://doi.org/10.3746/jkfn.2014.43.5.656
  4. Kang HW. 2012. Antioxidant and anti-inflammatory effect of extracts from Flammulina velutipes (Curtis) Singer. J Korean Soc Food Sci Nutr 41: 1072-1078. https://doi.org/10.3746/jkfn.2012.41.8.1072
  5. Cha EJ, Hwang YJ, Kim SH. 2004. Studies on physiological functionality proposal of Coriolus versicolor (Fr.) Quel and Ganoderma lucidum (Fr.) Karst. Korean J Human Ecol 7: 31-46.
  6. Kabir Y, Kimura S. 1989. Dietary mushrooms reduce blood pressure in spontaneously hypertensive rats (SHR). J Nutr Sci Vitaminol 35: 91-94. https://doi.org/10.3177/jnsv.35.91
  7. Kawagishi H, Inagaki R, Kanao T, Mizuno T, Shimura K, Ito H, Hagiwara T, Nakamura T. 1989. Fractionation and antitumor activity of the water-insoluble residue of Agaricus blazei fruiting bodies. Carbohyd Res 186: 267-273. https://doi.org/10.1016/0008-6215(89)84040-6
  8. Kim YD, Kim KJ, Cho DB. 2003. Antimicrobial activity of Lentinus edodes extract. Korean J Food Preserv 10: 89-93.
  9. Park MH, Oh KY, Lee BW. 1998. Anti-cancer activity of Lentinus edodes and Pleurotus astreatus. Korean J Food Sci Technol 30: 702-708.
  10. Park JW, Kim T, Lim DJ, Lee HB, Joo YS, Park YI. 2004. Antibacterial activities of mushroom liquid culture extracts against livestock disease-causing bacteria and antibiotic resistant bacteria. Korean J Mycol 32: 145-147. https://doi.org/10.4489/KJM.2004.32.2.145
  11. Mizuno T. 1999. Bioactive substances in Hericium erinaceus (Bull.:Fr.) Pers. (Yamabushitake), and its medicinal utilization. Int J Med Mushr 1: 105-119. https://doi.org/10.1615/IntJMedMushrooms.v1.i2.10
  12. Mizuno M, Morimoto M, Minato K, Tsuchida H. 1998. Polysaccharides from Agaricus blazei stimulate lymphocyte T-cell subsets in mice. Biosci Biotechnol Biochem 62: 434-437. https://doi.org/10.1271/bbb.62.434
  13. Nakajima A, Ishida T, Koga M, Takeuchi T, Mazda O, Takeuchi M. 2002. Effect of hot water extract from Agaricus blazei Murill on antibody-producing cells in mice. Int Immunopharmacol 2: 1205-1211. https://doi.org/10.1016/S1567-5769(02)00056-5
  14. Kawagishi H, Shimada A, Hosokawa S, Mori H, Sakamoto H, Ishiguro Y, Sakemi S, Bordner J, Kojima N, Furukawa S. 1996. Erinacines E, F, and G, stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett 37: 7399-7402. https://doi.org/10.1016/0040-4039(96)01687-5
  15. Chihara G, Hamuro J, Maeda Y, Arai Y, Fukuoka F. 1970. Faction of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (an edible mushroom). Cancer Res 30: 2776-2781.
  16. Tsukagoshi S, Ophashi F. 1974. Protein-bound polysaccharide preparation, PS-K, effective against mouse sarcoma-180 and rat ascites hepatoma AH-13 by oral use. Gann 65: 557-558.
  17. Choe SB, Kang ST. 2014. Investigation of antimicrobial activity and stability of Orixa japonica Thunb. leaf extract. Korean J Food Sci Technol 46: 39-43. https://doi.org/10.9721/KJFST.2014.46.1.39
  18. Youm TH, Lim HB. 2010. Antimicrobial activities of organic extracts from fruit of Thuja orientalis L. Korean J Medicinal Crop Sci 18: 315-322.
  19. Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira IC. 2008. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46: 2742-2747. https://doi.org/10.1016/j.fct.2008.04.030
  20. Gao Y, Tang W, Gao H, Chan E, Lan J, Li X, Zhou S. 2005. Antimicrobial activity of the medicinal mushroom Ganoderma. Food Rev Int 21: 211-229. https://doi.org/10.1081/FRI-200051893
  21. Takeuchi T, Iinuma H, Iwanaga J, Takahashi S, Takita T, Umezawa H. 1969. Coriolin, a new Basidiomycetes antibiotic. J Antibiot (Tokyo) 22: 215-217. https://doi.org/10.7164/antibiotics.22.215
  22. Anke T, Oberwinkler F, Steglich W, Hofle G. 1977. The striatins-new antibiotics from the basidiomycete Cyathus striatus (Huds. ex Pers.) Willd. J Antibiot (Tokyo) 30: 221-225. https://doi.org/10.7164/antibiotics.30.221
  23. Okamoto K, Sakai T, Shimada A, Shirai R, Sakamoto H, Yoshida S, Ojima F, Ishiguro Y, Kawagishi H. 1993. Antimicrobial chlorinated orcinol derivatives from mycelia of Hericium erinaceum. Phytochem 34: 1445-1446. https://doi.org/10.1016/0031-9422(91)80050-B
  24. Park EK, Kim BK. 1997. Antineoplastic components of mushrooms: antineoplastic activities of PS-K, a proteinbound polysaccharide of Coriolus versicolor (Fr.) Quel. Kor J Mycol 5: 25-30.
  25. Park KR, Lee WJ, Cho MG, Park ES, Jeong JY, Kwon OS, Yoon HS, Kim KY. 2010. Effects of the extracts from Gyrophora esculenta and Coriolus versicolor judae mycelia on the growth of intestinal bacteria. J Korean Soc Food Sci Nutr 39: 820-825. https://doi.org/10.3746/jkfn.2010.39.6.820
  26. Lee BW, Lee MS, Park KM, Kim CH, Ahn PU, Choi CU. 1992. Anticancer activities of the extract from the mycelia of Coriolus versicolor. Kor J Appl Microbial Biotechnol 20: 311-315.
  27. Lee SJ, Moon SH, Kim T, Kim JY, Seo JS, Kim DS, Kim J, Kim YJ, Park YI. 2003. Anticancer and antioxidant activities of Coriolus versicolor culture extracts cultivated in the citrus extracts. Kor J Microbiol Biotechnol 31: 362-367.
  28. Lee JS, Kim T, Lee YH, Jin CM, Kim HG, Kim WJ, Oh DC, Park YI. 2006. Antimicrobial activity of the Coriolus versicolor liquid culture extracts against antibiotic resistant bacteria and purification of active substance. Korean J Mycol 34: 92-97. https://doi.org/10.4489/KJM.2006.34.2.092
  29. Singleton VL, Rossi Jr JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16: 144-158.
  30. Smith H, Doyle S, Murphy R. 2015. Filamentous fungi as a source of natural antioxidants. Food Chem 185: 389-397. https://doi.org/10.1016/j.foodchem.2015.03.134
  31. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  32. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  33. Kim MK, Park H, Oh TJ. 2012. Antibacterial properties associated with microorganisms isolated from Arctic lichens. Korean J Microbiol Biotechnol 40: 380-388. https://doi.org/10.4014/kjmb.1207.07028
  34. Qi Y, Zhao X, Lim YI, Park KY. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J Korean Soc Food Sci Nutr 42: 655-662. https://doi.org/10.3746/jkfn.2013.42.5.655
  35. Hollman PCH, Hertog MGL, Katan MB. 1996. Analysis and health effects of flavonoids. Food Chem 57: 43-46. https://doi.org/10.1016/0308-8146(96)00065-9
  36. Robbins RJ. 2003. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51: 2866-2887. https://doi.org/10.1021/jf026182t
  37. Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53: 4290-4302. https://doi.org/10.1021/jf0502698
  38. Choi SY, Cho HS, Sung NJ. 2006. The antioxidative and nitrite scavenging ability of solvent extracts from wild grape (Vitis coignetiea) skin. J Korean Soc Food Sci Nutr 35: 961-966. https://doi.org/10.3746/jkfn.2006.35.8.961
  39. Que F, Mao L, Zhu C, Xie G. 2006. Antioxidant properties of Chineses yellow wine, its concentrate and volatiles. LWT -Food Sci Technol 39: 111-117. https://doi.org/10.1016/j.lwt.2005.01.001
  40. Hong MH, Jin YJ, Pyo YH. 2012. Antioxidant properties and ubiquinone contents in different parts of several commercial mushrooms. J Korean Soc Food Sci Nutr 41: 1235-1241. https://doi.org/10.3746/jkfn.2012.41.9.1235
  41. Arnao MB. 2000. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11: 419-421. https://doi.org/10.1016/S0924-2244(01)00027-9
  42. Jo HJ, Kim JW, Yoon JA, Kim KI, Chung KH, Song BC, An JH. 2014. Antioxidant activities of amaranth (Amaranthus spp. L.) flower extracts. Korean J Food & Nutr 27: 175-182. https://doi.org/10.9799/ksfan.2014.27.2.175
  43. Kim SM, Jung YJ, Pan CH, Um BH. 2010. Antioxidant activity of methanol extracts from the genus Lespedeza. J Korean Soc Food Sci Nutr 39: 769-775. https://doi.org/10.3746/jkfn.2010.39.5.769
  44. Awika JM, Rooney LW, Wu X, Prior RL, Cisneros-Zevallos L. 2003. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J Agric Food Chem 51: 6657-6662. https://doi.org/10.1021/jf034790i
  45. Clark AM, El-Feraly AS, Li WS. 1981. Antimicrobial activity of phenolic constituents of Magnolia grandiflora L. J Pharm Sci 70: 951-952. https://doi.org/10.1002/jps.2600700833
  46. Shon JS, Kim MK. 1988. Effects of hesperidin and naringin on antioxidative capacity in the rat. Korean J Nutr 31: 687-696.
  47. Song JH, Kim HS, Kim YG, Son BG, Choi YW, Kang JS. 1999. Antimicrobial activity of extract from Smilax china. J Agri Tech Dev Inst 3: 163-168.

Cited by

  1. Biological activity of wild Ligularia fischeri leaf extracts in the development of functional food materials vol.25, pp.3, 2018, https://doi.org/10.11002/kjfp.2018.25.3.359
  2. 구강세균에 대한 구름버섯 추출물의 항균효과 vol.17, pp.1, 2015, https://doi.org/10.13065/jksdh.2017.17.01.111
  3. 버섯원물과 버섯 추출물 그리고 버섯 유래 화합물을 포함한 식품과 기능성식품 vol.15, pp.4, 2015, https://doi.org/10.14480/jm.2017.15.4.155
  4. 새송이버섯 추출물이 구강세균에 작용하는 항균효과 vol.18, pp.1, 2015, https://doi.org/10.13065/jksdh.2018.18.01.9
  5. Lactobacillus rhamnosus BHN-LAB 76에 의한 Pueraria 발효 추출물의 항산화 활성 평가 vol.29, pp.5, 2015, https://doi.org/10.5352/jls.2019.29.5.545
  6. Lactobacillus plantarum BHN-LAB 33의 생물전환공정을 통한 방풍 발효 추출물의 항산화 활성 및 미백 활성 증대 효과 vol.29, pp.11, 2019, https://doi.org/10.5352/jls.2019.29.11.1208
  7. Quality Characteristics of Wet Noodles with Auricularia auricular-judae Powder vol.28, pp.6, 2015, https://doi.org/10.5934/kjhe.2019.28.6.673