DOI QR코드

DOI QR Code

Comparison of linkage disequilibrium levels in Iranian indigenous cattle using whole genome SNPs data

  • Karimi, Karim (Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman) ;
  • Koshkoiyeh, Ali Esmailizadeh (Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman) ;
  • Gondro, Cedric (School of Environmental and Rural Science, University of New England)
  • 투고 : 2015.09.12
  • 심사 : 2015.12.22
  • 발행 : 2015.12.31

초록

Background: Knowledge of linkage disequilibrium (LD) levels among different populations can be used to detect genetic diversity and to investigate the historical changes in population sizes. Availability of large numbers of SNP through new sequencing technologies has provided opportunities for extensive researches in quantifying LD patterns in cattle breeds. The aim of this study was to compare the extent of linkage disequilibrium among Iranian cattle breeds using high density SNP genotyping data. Results: A total of 70 samples, representing seven Iranian indigenous cattle breeds, were genotyped for 777962 SNPs. The average values of LD based on the $r^2$ criterion were computed by grouping all syntenic SNP pairwises for intermarker distances from 0 Kb up to 1 Mb using three distance sets. Average $r^2$ above 0.3 was observed at distances less than 30 Kb for Sistani and Kermani, 20 Kb for Najdi, Taleshi, Kurdi and Sarabi, and 10 Kb for Mazandarani. The LD levels were considerably different among the Iranian cattle breeds and the difference in LD extent was more detectable between the studied breeds at longer distances. Lower level of LD was observed for Mazandarani breed as compared to other breeds indicating larger ancestral population size in this breed. Kermani breed continued to have more slowly LD decay than all of the other breeds after 3 Kb distances. More slowly LD decay was observed in Kurdi and Sarabi breeds at larger distances (>100 Kb) showing that population decline has been more intense in more recent generations for these populations. Conclusions: A wide genetic diversity and different historical background were well reflected in the LD levels among Iranian cattle breeds. More LD fluctuation was observed in the shorter distances (less than 10 Kb) in different cattle populations. Despite of the sample size effects, High LD levels found in this study were in accordance with the presence of inbreeding and population decline in Iranian cattle breeds.

키워드

참고문헌

  1. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet. 2002;3(4):299-309. doi:10.1038/nrg777.
  2. Gouveia JJS, Da Silva MGBV, Paiva SR, de Oliveira SMP. Identification of selection signatures in livestock species. Genet Mol Biol. 2014;37(2):330-42. https://doi.org/10.1590/S1415-47572014000300004
  3. Kemper KE, Goddard ME. Understanding and predicting complex traits: knowledge from cattle. Hum Mol Genet. 2012;21(R1):R45-51. doi:10.1093/hmg/dds332.
  4. McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J, Coppieters W, et al. Whole genome linkage disequilibrium maps in cattle. BMC Genet. 2007;8:74. doi:10.1186/1471-2156-8-74.
  5. Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819-29.
  6. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: Genomic selection in dairy cattle: progress and challenges. J Dairy Sci. 2009;92(2):433-43. doi:10.3168/jds.2008-1646.
  7. Taylor JF. Implementation and accuracy of genomic selection. Aquaculture. 2014;420-421:S8-S14. doi:10.1016/j.aquaculture.2013.02.017.
  8. Sellner EM, Kim JW, McClure MC, Taylor KH, Schnabel RD, Taylor JF. Board-invited review: Applications of genomic information in livestock. J Anim Sci. 2007;85(12):3148-58. doi:10.2527/jas.2007-0291.
  9. Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet. 2006;38(11):1251-60. doi:10.1038/ng1911.
  10. Harmegnies N, Farnir F, Davin F, Buys N, Georges M, Coppieters W. Measuring the extent of linkage disequilibrium in commercial pig populations. Anim Genet. 2006;37(3):225-31. doi:10.1111/j.1365-2052.2006.01438.x.
  11. Meadows JR, Chan EK, Kijas JW. Linkage disequilibrium compared between five populations of domestic sheep. BMC Genet. 2008;9:61. doi:10.1186/1471-2156-9-61.
  12. Farnir F, Coppieters W, Arranz J, Berzi P, Cambisano N, Grisart B, et al. Extensive genome-wide linkage disequilibrium in cattle. Genome Res. 2000;10:220-7. https://doi.org/10.1101/gr.10.2.220
  13. Kiselyova TY, Kantanen J, Vorobyov NI, Podoba BE, Terletsky VP. Linkage disequilibrium analysis for microsatellite loci in six cattle breeds. Russ J Genet. 2014;50(4):406-14. doi:10.1134/s1022795414040048.
  14. Qanbari S, Pimentel EC, Tetens J, Thaller G, Lichtner P, Sharifi AR, et al. The pattern of linkage disequilibrium in German Holstein cattle. Anim Genet. 2010;41(4):346-56. doi:10.1111/j.1365-2052.2009.02011.x.
  15. Salomon-Torres R, Matukumalli LK, Van Tassell CP, Villa-Angulo C, Gonzalez-Vizcarra VM, Villa-Angulo R. High density LD-based structural variations analysis in cattle genome. PLoS One. 2014;9(7):e103046. doi:10.1371/journal.pone.0103046.
  16. Perez O'Brien AM, Meszaros G, Utsunomiya YT, Sonstegard TS, Garcia JF, Van Tassell CP, et al. Linkage disequilibrium levels in Bos indicus and Bos taurus cattle using medium and high density SNP chip data and different minor allele frequency distributions. Livest Sci. 2014;166:121-32. doi:10.1016/j.livsci.2014.05.007.
  17. Sargolzaei M, Schenkel FS, Jansen GB, Schaeffer LR. Extent of linkage disequilibrium in Holstein cattle in North America. J Dairy Sci. 2008;91(5):2106-17. doi:10.3168/jds.2007-0553.
  18. Flury C, Tapio M, Sonstegard T, Drogemuller C, Leeb T, Simianer H, et al. Effective population size of an indigenous Swiss cattle breed estimated from linkage disequilibrium. J Anim Breed Genet. 2010;127(5):339-47. doi:10.1111/j.1439-0388.2010.00862.x.
  19. Zhu M, Zhu B, Wang YH, Wu Y, Xu L, Guo LP, et al. Linkage Disequilibrium Estimation of Chinese Beef Simmental Cattle Using High-density SNP Panels. Asian-Australasian J Anim Sci. 2013;26(6):772-9. doi:10.5713/ajas.2012.12721.
  20. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-75. doi:10.1086/519795.
  21. Lewontin RC. The interaction of selection and linkage.i. general considerations; heterotic models. Genet Mol Biol. 1964;49:49-67.
  22. Hill WG. Estimation of linkage disequilibrium in randomly mating populations. Heredity. 1974;33:229-39. https://doi.org/10.1038/hdy.1974.89
  23. Du FX, Clutter AC, Lohuis MM. Characterizing linkage disequilibrium in pig populations. Int J Biol Sci. 2007;3:166-78.
  24. Hill WG, Weir BS. Maximum likelihood estimation of gene location by linkage disequilibrium. Am J Hum Genet. 1994;54:705-14.
  25. Villa-Angulo R, Matukumalli LK, Gill CA, Choi J, Van Tassell CP, Grefenstette JJ. High-resolution haplotype block structure in the cattle genome. BMC Genet. 2009;10:19. doi:10.1186/1471-2156-10-19.
  26. Espigolan R, Baldi F, Boligon AA, Souza FR, Gordo DG, Tonussi RL, et al. Study of whole genome linkage disequilibrium in Nellore cattle. BMC Genomics. 2013;14:305. https://doi.org/10.1186/1471-2164-14-305
  27. Khatkar MS, Nicholas FW, Collins AR, Zenger KR, Cavanagh JA, Barris W, et al. Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics. 2008;9:187. doi:10.1186/1471-2164-9-187.
  28. Porto-Neto LR, Kijas JW, Reverter A. The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes. Genet Select Evol. 2014;46:22. https://doi.org/10.1186/1297-9686-46-22
  29. Mokry F, Buzanskas M, de Alvarenga Mudadu M, do Amaral Grossi D, Higa R, Ventura R, et al. Linkage disequilibrium and haplotype block structure in a composite beef cattle breed. BMC Genomics. 2014;15 Suppl 7:S6.
  30. Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. Am J Hum Genet. 2001;69:1-14. https://doi.org/10.1086/321275
  31. Karimi K, Esmailizadeh Koshkoiyeh A, Asadi Fozi M, Porto-Neto LR, Gondro C. Prioritization for conservation of Iranian native cattle breeds based on genome-wide SNP data. Conserv Genet. 2015; 1-13. doi:10.1007/s10592-015-0762-9
  32. Purfield D, Berry D, McParland S, Bradley D. Runs of homozygosity and population history in cattle. BMC Genet. 2012;13:70.
  33. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 1999;22:139-44. https://doi.org/10.1038/9642
  34. Tenesa A, Knott SA, Ward D, Smith D, Williams JL, Visscher PM. Estimation of linkage disequilibrium in a sample of the United Kingdom dairy cattle population using unphased genotypes. J Anim Sci. 2003;81:617-23. https://doi.org/10.2527/2003.813617x
  35. Stephan W, Song YS, Langley CH. The hitchhiking effect on linkage disequilibrium between linked neutral loci. Genetics. 2006;172(4):2647-63. https://doi.org/10.1534/genetics.105.050179

피인용 문헌

  1. Evaluation of Bovine High-Density SNP Genotyping Array in Indigenous Dairy Cattle Breeds vol.29, pp.2, 2018, https://doi.org/10.1080/10495398.2017.1329150
  2. Evaluation of Linkage Disequilibrium, Effective Population Size and Haplotype Block Structure in Chinese Cattle vol.9, pp.3, 2019, https://doi.org/10.3390/ani9030083
  3. Whole genome detection of recent selection signatures in Sarabi cattle: a unique Iranian taurine breed vol.42, pp.2, 2015, https://doi.org/10.1007/s13258-019-00888-6
  4. Evaluation of two bovine SNP genotyping arrays for breed clustering and stratification analysis in well-known taurine and indicine breeds vol.31, pp.3, 2020, https://doi.org/10.1080/10495398.2019.1578227
  5. Linkage Disequilibrium and Effective Population Size of Buffalo Populations of Iran, Turkey, Pakistan, and Egypt Using a Medium Density SNP Array vol.12, pp.None, 2015, https://doi.org/10.3389/fgene.2021.608186
  6. Genome-wide estimation of inbreeding coefficient, effective population size and haplotype blocks in Vrindavani crossbred cattle strain of India vol.52, pp.5, 2015, https://doi.org/10.1080/09291016.2019.1600266
  7. Estimation of linkage disequilibrium levels and allele frequency distribution in crossbred Vrindavani cattle using 50K SNP data vol.16, pp.11, 2021, https://doi.org/10.1371/journal.pone.0259572
  8. Genome analyses revealed genetic admixture and selection signatures in Bos indicus vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-01144-2